А=СВ,
Где
Причем элементы сij и bij определяются по формулам:
Уравнение (7) можно записать в следующем виде:
CBx=b. (9)
Произведение Bx матрицы B на вектор-столбец x является вектором-столбцом, который обозначим через y:
Bx=y.(10)
Тогда уравнение (9) перепишем в виде:
Cy=b. (11)
Здесь элементы сij известны, так как матрица А системы (7) считается уже разложенной на произведение двух треугольных матриц С и В.
Перемножив матрицы в левой части равенства (11), получаем систему уравнений из которой получаем следующие формулы для определения неизвестных:
неизвестные yi удобно вычислять вместе с элементами bij.
После того как все yi определены по формулам (12), подставляем их в уравнение (10).
Так как коэффициенты bij определены (8), то значения неизвестных, начиная с последнего, вычисляем по следующим формулам:
К прямым методам, использующим свойство разреженности А, можно отнести: алгоритм минимальной степени, алгоритм минимального дефицита, древовидное блочное разбиение для асимметричного разложения, методы вложенных или параллельных сечений и др.
Метод Гаусса.
Пусть дана система
где А – матрица размерности m x m.
В предположении, что
делим на коэффициент
Затем из каждого из остальных уравнений вычитается первое уравнение, умноженное на соответствующий коэффициент
первое неизвестное оказалось исключенным из всех уравнений, кроме первого. Далее в предположении, что
Совокупность проведенных вычислений называется прямым ходом метода Гаусса.
Из
Реализация прямого метода Гаусса требует
1.2 Итерационные методы решения СЛАУ
Метод итераций (метод последовательных приближений).
Приближенные методы решения систем линейных уравнений позволяют получать значения корней системы с заданной точностью в виде предела последовательности некоторых векторов. Процесс построения такой последовательности называется итерационным (повторяющимся).
Эффективность применения приближенных методов зависят от выбора начального вектора и быстроты сходимости процесса.
Рассмотрим метод итераций (метод последовательных приближений). Пусть дана система n линейных уравнений с n неизвестными:
Ах=b, (14)
Предполагая, что диагональные элементы aii
Обозначим
Решим систему (16) методом последовательных приближений. За нулевое приближение примем столбец свободных членов. Любое (k+1)-е приближение вычисляют по формуле
Если последовательность приближений x(0),...,x(k) имеет предел
Метод Зейделя.
Метод Зейделя представляет собой модификацию метода последовательных приближений. В методе Зейделя при вычислении (k+1)-го приближения неизвестного xi (i>1) учитываются уже найденные ранее (k+1)-е приближения неизвестных xi-1.
Пусть дана линейная система, приведенная к нормальному виду:
Выбираем произвольно начальные приближения неизвестных и подставляем в первое уравнение системы (17). Полученное первое приближение подставляем во второе уравнение системы и так далее до последнего уравнения. Аналогично строим вторые, третьи и т.д. итерации.
Таким образом, предполагая, что k-е приближения
где k=0,1,...,n
Метод Ланцоша.
Для решения СЛАУ высокого порядка (1), матрица, коэффициентов которой хранится в компактном нижеописанном виде, наиболее удобным итерационным методом является метод Ланцоша [4], схема которого имеет вид:
где
Преимуществом данного метода является его высокая скорость сходимости к точному решению. Кроме того, доказано, что он обладает свойством «квадратичного окончания», т.е. для положительно определенной матрицы можно гарантировано получить точное решение при количестве итераций
где
Среднеквадратичную разность необходимо контролировать при выполнении каждых k наперед заданных итераций.
Отдельно следует рассмотреть проблему выбора начального приближения