Смекни!
smekni.com

Билеты по геометрии (11 класс) (стр. 3 из 3)

Билет № 15

1. Цилиндр (формулировки и примеры)

2. Признак параллельных прямых.

1. Цилиндр. Рассмотрим две параллельные плоскостиα и β и окружность L с центром О радиуса r , расположенную в пл α. Отрезки прямых заключенных между плоскостями образуют цилиндрическую поверхность. Сами отрезки называются образующими цилиндрической поверхности По построению концов образующих расположенных в пл β заполним окружность

L1. Тело ограниченное цилиндрической поверхностью и двумя кругами с границами L и L1 , называется цилиндром. Цилиндрическая поверхность называется боковой поверхностью цилиндра, а круги - основаниями цилиндра . Образующие цилиндрической поверхности называются образующими цилиндра , прямая ОО1- осью цилиндра.

Цилиндр может быть получен вращением прямоугольника вокруг одной из его сторон. Сечение цилиндра , проходящее через ось , представляет собой прямоугольник , две стороны которого образующие , а 2 другие –диаметры оснований цилиндра , такое сечение называется осевым. Если секущая плоскость ⊥к оси цилиндра , то сечение является кругом. Цилиндры так же могут быть и наклонными или иметь в своем основании параболу .

Параллельность прямых а и bобозначается так: а||b. Докажем теорему о параллельных прямых.

Т е о р е м а. Через любдю точку пространства, не лежащую на данной прямой, проходит прямая, параллелькая данной, и притом только одна.

Д-во. Рассмотрим прямую aи т М, не лежащую на этой прямой. Через прямую a и т М проходит

пл, и притом только одна . Обозначим эту плоскость буквой α. Прямая, проходящая через точку М параллельно прямой а, должна лежать в одной плоскости с т М и прямой а, т. е. должна лежать в плоскости α. Ho в плоскости α, как известно из курса планиметрии, через т М проходит прямая, параллельная прямой а, и притом только одна. Эта прямая обозначена буквой b. Итак, b единственная прямая, проходящая через т М параллельно пря­мой а. Теорема доказана.

Билет №16

1. Конус (формулировки и примеры)

2. Признак параллельности прямой и плоскости

1.Конус. Рассмотрим окружность L с центром О и прямую ОР , перпендикулярную к плоскости этой окружности. Каждую точку окружности соединим с отрезом в т. Р Поверхность, образованная этими отрезками называется конической поверхностью

а сами отрезки – образующими конической поверхности. Тело, ограниченное конической поверхностью и круг-ом с границей L, называется конусом .Коническая по-верх называется боковой поверхностью конуса, а круг - снованием конуса . Т.Р называется вершиной конуса , а образующие конической поверхности – образующими конуса. Все образующие равны друг другу . ОР , прохо-дящая через центр основания и вершину , называется Осью конуса . Ось конуса ⊥ к плоскости основания. Отрезок ОР называется высотой конуса.

Конус можно получить и вращением прямоуголь-ным треугольником вокруг одного из его катетов. При этом боковая поверхность образуется с помо-щью гипотенузы. Рассмотрим сечения конуса. Если секущая ось проходит через ось , то сечение пред-ставляет собой треугольник , и называется осевым сечением. Если секущая плоскость ⊥к оси ОР конуса, о сечене пред-ставляет собой круг с центром в т.О1 , расположенным на оси конуса. R1этогокруга равен РО1/РОr , где r- радиус основания конуса , что легко усмотреть из подобия△РОМ∾△РО1М1

2.Определение. Прямая и плоскость называются параллельными, если они не имеют общих точек.

Теорема.Если прямая , не лежащая в даннойц плоскости, палаллльна какой-нибудь прямой , лежащей в этой плоскости, то она параллнльна данной плоскости.

Д-во. Рассмотрим пл.αи 2║прямые a и b , расположенные так, что прямая b лежит в пл α, а прямая a не лежит в этой пл. Докажем, что α║a. Допустим, что это не так, тогда прямая a пересекает пл α , а значит по лемме о пересечении пл параллельными прямыми пр b так же пересекает пл α . Но это невозможно , так как пр b лежит в пл α. Итак пр a не пересекает пл α, поэтому она ║этой плоскости.

Билет № 17

1. Сфера, шар( формулировки, примеры)

2. Признак параллельности плоскостей.

Определение.Сферой называется поверхность, состоящая из всех точен. пространства, расположенных на данном расстоянии or данной точки

Данная точка называется центром сферы (т О), а данное расстояние — радиусом сферы. Радиус сфе­ры часто обозначают буквой R Люб-ой отрезок, соединяющий центр и какую-нибудь точку сферы, также называется радиусом сферы.Отрезок, соединяю­щий две точки сферы и проходящий через ее центр, называет­ся диаметром сферы. Очеви-дно, диаметр сферы равен 2R Отметим, что сфера может быть полу-чена вращением полуокружности вокруг ее диаметра Тело, ограни-ченное сферой, называется шаром. Центр, радиус и диаметр сферы называются также центром, радиусом и диаметром шара. Очевидно, шар радиуса R с центром О содержит все точки пространства, кот. Расположены от точки О на расстоянии, не превышающем H(вклю-чая и точку О), и не содержит других точек.

2.Теорема. Если две пересекающиеся прямые одной плоскости соответственно параллельны двум прямым, другой плоскости, то эти плоскости праллельны.

Д-во. Рассмотрим две плоскости α и β. В плоскости αлежат пересека-ющиеся в точке М прямые a и b, а в плоскости β — прямые a1и b\,причем a||a1и b||b1. Докажвм, что a||b. Прежде всего отметим, что по признаку параллельности прямой и плоскости a||β и b||β.Допустим, что плоскости α и β не параллельны. Тогда они пересекаются по некоторой прямой с. Мы получили, что плоскость a проходит через прямую а, па-раллельную плоскости β, и пересекает плоскость по прямой с. Отсюда следует, что a||с.

Но плоскость a проходит также через прямую b, параллель­ную плоскости β. Поэтому b||c. Т.о, через т М проходят две прямые a и b, параллельные прямой с. Но это невозможно, т.к по теореме о параллельных прямых через точку М проходит только одна прямая, параллельная прямой с.Значит, наше допущение неверно и α|| β. Теорема доказана.

Билет № 18

1.Формула прямоугольногопараллелепипеда. (формулировка и пример)

2. Свойства перпендикулярности прямой и плоскости( доказательство одного из них)

2. Определение.Прямая называется перпендикулярной к плоскости , если она перпендикулярна к любой прямой , лежащей в этой плоскости.

Теорема.Если одна из 2-ух параллельных прямых перпендикуляр-на к плоскости, то и другая прямая перпендикулярна к этой плос-кости.

Д-во. Рассмотрим 2 ║а и а1 и пл α, такую, что а^α. Докажем, что и а1^α.. проведем какую-нибудь прямую х в пл α. Так как а^α, то а^х. По лемме о перпендикулярности 2-ух параллельных прямых к третьей а1^х. Т.о. прямая а1 ^ к любой прямой , лежащей в пл a т.е а1^α.

Теорема. Если 2 прямые перпендикулярны к плоскости , то они параллельны.

Билет №20

1. Фрмула обьема шара( формула примеры)

2. Теорема о трех перпендикулярах

1.Теорема: Объем шара радиуса R равен 4/3pR3

Д-во: Рассмотрим шар радиуса R с центром в т.О и выберем ост Ох произвольным образом. Сечение шара пл. ^к оси Ох и проходящей через т М этой оси является кругом с центром в т М. Обозничим радиус этого круга r , а его площадь S(x), где х- абсц-исса т М. Выразим S(х)через х и R.Из прямоуголь-ника ОМС находим: r=ÖOC2 –OM2 =ÖR2-x2.Так как S(x)=pR2 ,то S(x)= p(R2- x2). Заметим , что эта фор-мула верна для любого положения т.М на диаметре АВ, т.е. для всех х, удовлетворяющих условию -R£ x £R. Примеряя основную формулу для вычисления объемов тел при а= -R, b=R, получим

V R R R R px3 R 4
=∫p(R2-x2)dx= pR2∫ dx-p∫x2dx=pR2x½- ½= pR3
3 3
-R -R -R -R -R

2.Теорема. Прямая проведенная в плоскости через основание наклонной перпендикулярно к её проекции на эту плоскость, перпендикулярна и к самой наклонной.

Д-во. Дана пл α и перпендикуляр АН , АМ- наклонная, а- прямая, проведенная в пл α через т м^ к проекции НМ наклонной. Докажем , что а ^АМ. Рассотрим пл АМН. Пр.а ^к этой пл, т.к она ^ к 2-ум пересекающимся прямым АН и МН(а ^ НМ по условию и а ^АН, т.к. АН^ α). Отсюда =>, что пр а ^ к любой прямой , лежащей в пл АМН, в частности а^АМ

Обратная теорема.Прямая проведенная в плоскости через основание наклонной перпендикулярно к ней перпендикулярна и к её проекции