Введение.
В своей деятельности человеку повсюду приходится сталкиваться с необходимостью изучать форму, размеры, взаимное расположение пространственных фигур. Подобные задачи решают и астрономы, имеющие дело с самыми большими масштабами, и физики, исследующие структуру атомов и молекул. Раздел геометрии, в котором изучаются такие задачи, называется стереометрией (от греческого «стереос»- объемный, пространственный).
План.
I. Основные аксиомы стереометрии--------------- 4 II. Прямые, плоскости, параллельность------------ 6
Итак, в стереометрии к основным понятиям планиметрии добавляется еще одно - плоскость, а вместе с ним - аксиомы, регулирующие «взаимоотношения» плоскостей с другими объектами геометрии. Таких аксиом три.
Первая- аксиома выхода в пространство - придает «театру геометрических действий» новое, третье измерение:
· Имеется четыре точки, не лежащие в одной плоскости (рис. 1)
· Через любые три точки проходит плоскость.
·
· (рис.2)
Третья аксиома играет очень существенную и неочевидную с первого взгляда роль в стереометрии: она делает пространство в точности трехмерным, потому что в пространствах размерности четыре и выше плоскости могут пересекаться по одной точке. К трем указанным так же присоединяются планометрические аксиомы, переосмысленные и подправленные с учетом того, что теперь мы имеем дело не с одной, а с несколькими плоскостями. Например, аксиому прямой - через две различные точки можно провести одну и только одну прямую - переносят в стереометрию дословно, но только она уже распространяется на две точки пространства.
В качестве следствия выведем прямо из аксиом одно полезное следствие: прямая, имеющая с плоскостью хотя бы две общие точки, целиком лежит в этой плоскости.
Путем несложных доказательств мы находим, что:
· На каждой плоскости выполняются все утвержде-ния планиметрии.
|
II. Прямые, плоскости, параллельность.
Уже такое основное понятие, как параллельность прямых, нуждается в новом определении:
две прямые в пространстве называются парал-лельнылт, если они лежат в одной плоскости и не имеют общих точек. Так что не попадайтесь в одну из излюбленных экзаменаторами ловушек — не пытайтесь «доказывать», что через две параллельные прямые можно провести плоскость: это верно по определению параллельности прямых! Знаменитую планиметрическую аксиому о единственности параллельной включают и в аксиомы стереометрии, а с её помощью доказывают главное свойство параллельных прямых в пространстве:
· Через точку, не лежащую на прямой, можно провести одну и только одну прямую параллельно данной.
Сохраняется и другое важное свойство параллельных прямых, называемое транзитивностью параллельности:
· Если две прямые а и b параллельны третьей прямой с, то они параллельны друг другу.
Но доказать это свойство в стереометрии сложнее. На плоскости непараллельные прямые обязаны пересекаться и потому не могут быть одновременно параллельны третьей (иначе нарушается аксиома параллельных). В пространстве существуют непараллельные и притом непересекающиеся прямые — если они лежат в разных плоскостях. О таких прямых говорят, что они скрещиваются.
· Если две плоскости параллельны третьей плоскости, то они параллельны между собой.