Смекни!
smekni.com

Двойственный симплекс-метод и доказательство теоремы двойственности (стр. 3 из 4)

Двойственная задача. Найти матрицу-строку Y = (y1, y2, …, yn), которая удовлетворяет системе ограничений YA£C, Y³0 и максимизирует линейную функцию f = YA0.

Систему неравенств с помощью дополнительных переменных мож­но преобразовать в систему уравнений, поэтому всякую пару симмет­ричных двойственных задач можно преобразовать в пару несимметрич­ных, для которых теорема двойственности уже доказана.

Используя симметричность, можно выбрать задачу, более удоб­ную для решения. Объем задачи, решаемой с помощью ЭВМ, ограни­чен числом включаемых строк, поэтому задача, довольно громоздкая в исходной постановке, может быть упрощена в двойственной формули­ровке. При вычислениях без помощи машин использование двойствен­ности упрощает вычисления.

Исходная задача. Найти минимальное значение линейной функции Z = x1 + 2x2 + 3x3при ограничениях

2x1 + 2x2 - x3³ 2,

x1 - x2 - 4x3£ -3, xi³ 0 (i=1,2,3)

x1 + x2 - 2x3³ 6,

2x1 + x2 - 2x3³ 3,

Очевидно, для того чтобы записать двойственную задачу, сначала необходимо систему ограничений исходной задачи привести к виду (1.12). Для этого второе неравенство следует умножить на -1.

Двойственная задача. Найти максимум линейной функции f = 2y1+ 3y2 + 6y3 + 3y4при ограничениях

2y1 - y2 + y3 + 2y4£ 1,

2y1 + y2 + y3 + y4³ 2,

-y1+ 4y2 - 2y3 - 2y4³ 3,

Для решения исходной задачи необходимо ввести четыре дополни­тельные переменные и после преобразования системы - одну искус­ственную. Таким образом, исходная симплексная таблица будет состо­ять из шести строк и девяти столбцов, элементы которых подлежат преобразованию.

Для решения двойственной задачи необходимо ввести три допол­нительные переменные. Система ограничений не требует предваритель­ных преобразований, ее первая симплексная таблица содержит четыре строки и восемь столбцов.

Двойственную задачу решаем симплексным методом (табл. 1.3).

Оптимальный план двойственной задачи Y* = (0; 1/2; 3/2; 0), fmax=21/2.

Оптимальный план исходной задачи находим, используя оценки (m + 1)-й строки последней итерации, стоящие в столбцах A5, A6, A7 : x1 = 3/2 + 0 = 3/2; x2 = 9/2 + 0 = 9/2; x3= 0+ 0 = 0. При оптимальном плане исходной задачи X* = (3/2; 9/2; 0) линейная функ­ция достигает наименьшего значения: Zmin =21/2.

Т а б л и ц а 1.3

i Базис С базиса A0 2 3 6 3 0 0 0
A1 A2 A3 A4 A5 A6 A7

1

2

3

A5

A3

A7

0

0

0

1

2

3

2

2

-1

-1

1

4

1

1

-2

2

-1

-2

1

0

0

0

1

0

0

0

1

m + 1 Zi - Cj 0 -2 -3 -6 -3 0 0 0

1

2

3

A3

A6

A7

6

0

0

1

1

5

2

0

3

-1

2

6

1

0

0

2

-1

2

1

-1

2

0

1

0

0

0

1

m + 1 Zi - Cj 6 10 -9 0 9 6 0 0

1

2

3

A3

A2

A7

6

3

0

3/2

½

2

2

0

3

0

1

0

1

0

0

3/2

-1/2

4

½

-1/2

5

½

½

3

0

0

1

m + 1 Zi - Cj 21/2 10 0 0 9/2 3/2 9/2 0

4. Виды математических моделей двойственных задач

На основании рассмотренных несимметричных и симметричных двойственных задач можно заключить, что математические модели пары двойственных задач могут иметь один из следующих видов.

Несимметричные задачи

(1) Исходная задача Двойственная задача

Zmin = CX;fmax = YA0;

AX = A0; YA £ С.

X³ 0.

(2) Исходная задача Двойственная задача

Zmax = CX;fmin = YA0;

AX = A0; YA ³ С.

X³ 0.

Симметричные задачи

(3) Исходная задача Двойственная задача

Zmin = CX;fmax = YA0;

AX³A0; YA £ С.

X³ 0. Y ³ 0.

(4) Исходная задача Двойственная задача

Zmax = CX;fmin = YA0;

AX£A0; YA ³ С.

X³ 0. Y ³ 0.

Таким образом, прежде чем записать двойственную задачу для данной исходной, систему ограничений исходной задачи необходимо привести к соответствующему виду. Запишем, например, математиче­скую модель двойственной задачи для следующей исходной.

Найти минимальное значение линейной функции Z = 2x1 + x2 + 5x3 при ограничениях

x1 – x2 – x3£ 4,

x1 – 5x2 + x3³ 5, xj³ 0 (j = 1, 2, 3).

2x1 – x2 + 3x3³6,

Рассматриваемая задача относится к симметричным двойственным задачам на отыскание минимального значения линейной функции. Для того чтобы было можно записать двойственную задачу, ее модель долж­на иметь вид (3). Переход осуществляется умножением первого не­равенства на -1.

Исходная задача:

Zmin = 2x1 + x2 + 5x3при ограничениях

-x1 + x2 + x3³ -4,

x1 – 5x2 + x3³ 5, xj³ 0 (j = 1, 2, 3).

2x1 – x2 + 3x3³6,

Двойственная задача:

fmin = -4x1 + 5x2 + 6x3при ограничениях

-y1 + y2 + 2y3£ 2,

y1 – 5y2 - y3£ 1, yi³ 0 (i = 1, 2, 3).

2y1 + y2 + 3y3£ 5,

Приведем без доказательства следующую теорему. Теорема 1.1.Если при подстановке компонент оптимального пла­на в систему ограничений исходной задачи i-e ограничение обращается в неравенство, то i-я компонента оптимального плана двойственной задачи равна нулю.

Если i-я компонента оптимального плана двойственной задачи по­ложительна, то i-e ограничение исходной задачи удовлетворяется ее оптимальным решением как строгое равенство.

5. Двойственный симплексный метод

В п. 2 и п. 3 настоящего параграфа было показано, что для получения решения исходной задачи можно перейти к двой­ственной и используя оценки ее опти­мального плана, определить оптимальное решение исходной задачи.

Переход к двойственной задаче не обязателен, так как если рассмо­треть первую симплексную таблицу с единичным дополнительным ба­зисом, то легко заметить, что в столбцах записана исходная задача, а в строках - двойственная. Причем оценками плана исходной задачи являются Сj а оценками плана двойственной задачи – bi. Решим "двойственную задачу по симплексной таблице, в которой записана ис­ходная задача; найдем оптимальный план двойственной задачи, а вместе с ним и оптимальный план исходной задачи. Этот метод носит на­звание двойственного симплексного метода,

Пусть необходимо решить исходную задачу линейного программиро­вания, поставленную в общем виде: минимизировать функцию Z =СХ при АХ= A0, Х³ 0. Тогда в двойственной задаче необходимо максимизировать функцию f = YA0 при YA £ С. Допустим, что выбран такой базис D = (A1, А2, ..., Аi, ..., Аm), при котором хотя бы одна из компонент вектора Х = D-1A0 = (x1, x2, ..., xi, ..., xm) отрицатель­ная (например, xi < 0), но для всех векторов Aj выполняется соотно­шение Zj – Cj£ 0 (i = 1,2, ..., n). Тогда на основании теоремы двойственности Y = Сбаз D-1 - план двойственной задачи. Этот план не оптимальный, так как, с одной стороны, при выбранном бази­се X содержит отрицательную компоненту и не является планом исходной задачи, а с другой стороны, оценки оптимального плана двой­ственной задачи должны быть неотрицательными.