Рис. 3.
При этом на касательной плоскости появляются векторы, отличные от
; это приводит к тому, что кроме решения Филиппова появляются и другие решения.Т.о. определение (А) А.Ф. Филиппова соответствует минимальному возможному определению множества F(t, x) среди всех допустимых. Это удобно в том отношении, что для решения в смысле Филиппова чаще, чем в других случаях, имеет место единственность решения.
aЕсли весь отрезок с концами
и лежит на плоскости P, то скорость движения по поверхности разрыва S определяется неоднозначно.При
, имеет место скользящий режим, о котором шла речь во введение. Пусть уравнение идеального скольжения имеет вид (3). Вычисляя для из условия , находим уравнение
, (4)с помощью котрого и доопределяется движение в скользящем режиме (начальные условия для (4) выбираются на поверхности разрыва, т. е. S(x(0))=0).
Пример 3.
Решить систему
Всякое решение этой системы рано или поздно попадает на прямую
и уже не может сойти с нее. Если точка М лежит на оси , то в окрестности этой точки вектор , компоненты которого - правые части системы, принимает два значения: при , (6,-2) при . Отложим из точки М эти два вектора и соединим их концы отрезком АВ: Этот отрезок и будет искомым множеством, в котором, согласно определению 3, лежит конец вектора
для точки М. В то же время вектор скорости должен лежать на оси . Т.к. решение не может сойти с нее ни вверх, ни вниз, следовательно, конец вектора лежит в точке пересечения отрезка АВ и оси . Т.о., этот вектор определяется однозначно. Легко подсчитать, что Т.о., связь теорий уравнений (1) с разрывной правой частью с теорией диф. Включений (2) очевидна. Имея уравнение (1) с разрывной f(t, x) необходимо заменить значение
в точке разрыва некоторым множеством. Это множество должно быть ограниченным, выпуклым, замкнутым. Кроме этого оно должно включать все предельные значения при (t, x) . После такой замены (для любой точки разрыва) вместо (1) получаем диф. включение (2), в котором многозначная функция удовлетворяет перечисленным требованиям.Однако, в некоторых случаях множество
в (2) в точках разрыва функции нельзя определить, зная только значения функции в точках ее непрерывности.Пример 4.
В механической системе с сухим трением:
, масса тела, его отклонение, упругая сила, сила трения, являющаяся нечетной и разрывной при =0 функцией скорости , -внешняя сила. Трение покоя может принимать любые значения между [d1] своим наибольшим и наименьшим значениями и - . Если = , то применимо доопределение . Если же > , то движение с нулевой начальной скоростью зависит не только от значений функции в областях ее непрерывности, но и от величины . Доопределение А тогда неприменимо. В обоих случаях систему можно записать в виде включения (2). Множество при – точка, а при v=0 – отрезок, длина которого зависит от .Следовательно, множество
не всегда определяется предельными значениями функции из (1), и в общем случае это множество надо задавать, используя какие-то сведения о рассматриваемой системе.Необходимость охватить такие системы приводит к следующему способу построения множества F(t,x).
Рассмотрим систему
, (6)где
, вектор-функция непрерывна по совокупности аргументов, а скалярные или векторные функции разрывны соответсвенно на множествах , i=1,…,r, которые могут иметь общие точки и даже совпадать. В каждой точке (t, x) разрыва функции задается замкнутое множество - множество возможных значений аргумента функции . Предполагается, что при аргументы и могут независимо друг от друга пробегать соответственно множества и . Обычно, это условие выполнено, если функции и описывают различные независимые составные части (блоки) физической системы. В точках, где функция непрерывна, множество состоит из одной точки . В точках, разрыва функции необходимо, чтобы множество содержало все точки, предельные для точек любой из последовательностей вида , где k=1,2,…(или , где k=1,2,…). Потребуем, чтобы множество было выпуклым (если - скалярная функция, то - отрезок или точка).