V(w)=
6. Получим аналитические выражения для частотных характеристик. По определению амплитудная частотная характеристика (АЧХ) - это модуль частотной передаточной функции, т.е.
A(w)=ЅW(jw)Ѕ
A(w)=
= (8)Фазовая частотная характеристика (ФЧХ) - это аргумент частотной передаточной функции, т.е.
j(w)=argW(jw)
j(w)=arctgk - arctg
j(w)=-arctg(-Tw) (9)
Для построения логарифмических частотных характеристик вычислим
L(w)=20lg A(w)
L(w)=20lg
7. Построим графики частотных характеристик. Для этого сначала получим их численные значения.
k=2
T=0.62
A(w)=
j(w)=-arctg(-0.62w)
L(w)=20lg
U(w)=
V(w)=
4.1.5. АПЕРИОДИЧЕСКОЕ ЗВЕНО 2-го ПОРЯДКА
1. Данное звено описывается следующим уравнением:
a2
+a1 +aoy(t) =bog(t) (1)Коэффициенты имеют следующие значения:
a2=0,588
a1=50,4
ao=120
bo=312
Запишем это уравнение в стандартной форме. Для этого разделим (1) на ao:
+ +y(t)= g(t) +T1 +y(t)=kg(t) (2),где k=
-коэффициент передачи,T1=
,T22= -постоянные времени.Если корни характеристического уравнения для дифференциального уравнения 2-го порядка вещественны (это выполняется при T1>2T2), то оно является апериодическим 2-го порядка. Проверим это для нашего уравнения:
T1=0,42
2T2=0,14
0,42>014, следовательно, данное уравнение - апериодическое.
Запишем исходное уравнение в операторной форме, используя подстановку p=
.Получим:(
p2+T1 p+1)y(t)=kg(t) (3)2. Получим передаточную функцию для колебательного звена. Воспользуемся преобразованиями Лапласа:
y(t) = Y(s)
=sY(s) =s2Y(s)g(t)=G(s)
По определению передаточная функция находится как отношение выходного сигнала к входному. Тогда уравнение (2) будет иметь вид:
s2Y(s)+T1 sY(s)+Y(s)=kG(s)W(s)=
(4)3. Найдем выражения для переходной функции и функции веса. По определению аналитическим выражением переходной функции является решение уравнения (2) при нулевых начальных условиях, т.е. g(t)=1 или по преобразованиями Лапласа
h(t)=H(s)
H(s)=W(s)
= = , гдеT3,4=
Разложив на элементарные дроби правую часть этого выражения, получим
H(s)=
=
Переходя к оригиналу, получим
h(t)=kЧ1(t)
==k Ч1(t)
(5)Функцию веса можно получить дифференцированием переходной функции
w(t)=
или из преобразований Лапласа
w(t)=w(s)
w(s)=W(s)Ч1=
=Разложив на элементарные дроби правую часть этого выражения, получим
w(s)=
=
Переходя к оригиналу, получим
w(t)=
==
(6)4. Построим графики переходной функции и функции веса. Подставляя исходные данные, вычислим коэффициент передачи, постоянные времени и временные характеристики:
5. Получим частотную передаточную функцию, заменив в передаточной функции (4) s на jw:
W(s)=
W(jw)=
(7)Выделим вещественную и мнимую части :
W(jw) =
=U(w)=
V(w)=
6. Получим аналитические выражения для частотных характеристик. По определению амплитудная частотная характеристика (АЧХ) - это модуль частотной передаточной функции, т.е.
A(w)=ЅW(jw)Ѕ
A(w)=
=..............(8)Фазовая частотная характеристика (ФЧХ) - это аргумент частотной передаточной функции, т.е.
j(w)=argW(jw)
j(w)=................
j(w)=............... (9)
Для построения логарифмических частотных характеристик вычислим
L(w)=20lg A(w)
L(w)=...................
7. Построим графики частотных характеристик. Для этого сначала получим их численные значения.
4.1.6. КОЛЕБАТЕЛЬНОЕ (УСТОЙЧИВОЕ) ЗВЕНО
1. Данное звено описывается следующим уравнением:
a2
+a1 +aoy(t) =bog(t) (1)Коэффициенты имеют следующие значения:
a2=0,588
a1=0,504
ao=12
bo=31,20
Запишем это уравнение в стандартной форме. Для этого разделим (1) на ao:
+ +y(t)= g(t) +T1 +y(t)=kg(t) (2),где k=
-коэффициент передачи,T1=
,T22= -постоянные времени.Если корни характеристического уравнения для дифференциального уравнения 2-го порядка комплексные (это выполняется при T1<2T2), то оно является колебательным. Проверим это для нашего уравнения:
T1=0,042
2T2=0,14
0,042
Представим данное уравнение в следующем виде:
пусть T2=T,
.Тогда уравнение (2):
Здесь T - постоянная времени, x - декремент затухания (0<x<1).
Запишем исходное уравнение в операторной форме, используя подстановку p=
.Получим:(
p2+2xTp+1)y(t)=kg(t) (3)2. Получим передаточную функцию для колебательного звена. Воспользуемся преобразованиями Лапласа:
y(t) = Y(s)
=sY(s) =s2Y(s)