Смекни!
smekni.com

Дифференцированные уравнения (стр. 3 из 7)

V(w)=

6. Получим аналитические выражения для частотных характеристик. По определению амплитудная частотная характеристика (АЧХ) - это модуль частотной передаточной функции, т.е.

A(w)=ЅW(jw)Ѕ

A(w)=

=
(8)

Фазовая частотная характеристика (ФЧХ) - это аргумент частотной передаточной функции, т.е.

j(w)=argW(jw)

j(w)=arctgk - arctg

j(w)=-arctg(-Tw) (9)

Для построения логарифмических частотных характеристик вычислим

L(w)=20lg A(w)

L(w)=20lg

7. Построим графики частотных характеристик. Для этого сначала получим их численные значения.

k=2

T=0.62

A(w)=

j(w)=-arctg(-0.62w)

L(w)=20lg

U(w)=

V(w)=

4.1.5. АПЕРИОДИЧЕСКОЕ ЗВЕНО 2-го ПОРЯДКА

1. Данное звено описывается следующим уравнением:

a2

+a1
+aoy(t) =bog(t) (1)

Коэффициенты имеют следующие значения:

a2=0,588

a1=50,4

ao=120

bo=312

Запишем это уравнение в стандартной форме. Для этого разделим (1) на ao:

+
+y(t)=
g(t)

+T1
+y(t)=kg(t) (2),

где k=

-коэффициент передачи,

T1=

,T22=
-постоянные времени.

Если корни характеристического уравнения для дифференциального уравнения 2-го порядка вещественны (это выполняется при T1>2T2), то оно является апериодическим 2-го порядка. Проверим это для нашего уравнения:

T1=0,42

2T2=0,14

0,42>014, следовательно, данное уравнение - апериодическое.

Запишем исходное уравнение в операторной форме, используя подстановку p=

.Получим:

(

p2+T1 p+1)y(t)=kg(t) (3)

2. Получим передаточную функцию для колебательного звена. Воспользуемся преобразованиями Лапласа:

y(t) = Y(s)

=sY(s)

=s2Y(s)

g(t)=G(s)

По определению передаточная функция находится как отношение выходного сигнала к входному. Тогда уравнение (2) будет иметь вид:

s2Y(s)+T1 sY(s)+Y(s)=kG(s)

W(s)=

(4)

3. Найдем выражения для переходной функции и функции веса. По определению аналитическим выражением переходной функции является решение уравнения (2) при нулевых начальных условиях, т.е. g(t)=1 или по преобразованиями Лапласа

h(t)=H(s)

H(s)=W(s)

=
=
, где

T3,4=

Разложив на элементарные дроби правую часть этого выражения, получим

H(s)=

=

Переходя к оригиналу, получим

h(t)=kЧ1(t)

=

=k Ч1(t)

(5)

Функцию веса можно получить дифференцированием переходной функции

w(t)=

или из преобразований Лапласа

w(t)=w(s)

w(s)=W(s)Ч1=

=

Разложив на элементарные дроби правую часть этого выражения, получим

w(s)=

=

Переходя к оригиналу, получим

w(t)=

=

=

(6)

4. Построим графики переходной функции и функции веса. Подставляя исходные данные, вычислим коэффициент передачи, постоянные времени и временные характеристики:

5. Получим частотную передаточную функцию, заменив в передаточной функции (4) s на jw:

W(s)=

W(jw)=

(7)

Выделим вещественную и мнимую части :

W(jw) =

=

U(w)=

V(w)=

6. Получим аналитические выражения для частотных характеристик. По определению амплитудная частотная характеристика (АЧХ) - это модуль частотной передаточной функции, т.е.

A(w)=ЅW(jw)Ѕ

A(w)=

=..............(8)

Фазовая частотная характеристика (ФЧХ) - это аргумент частотной передаточной функции, т.е.

j(w)=argW(jw)

j(w)=................

j(w)=............... (9)

Для построения логарифмических частотных характеристик вычислим

L(w)=20lg A(w)

L(w)=...................

7. Построим графики частотных характеристик. Для этого сначала получим их численные значения.

4.1.6. КОЛЕБАТЕЛЬНОЕ (УСТОЙЧИВОЕ) ЗВЕНО

1. Данное звено описывается следующим уравнением:

a2

+a1
+aoy(t) =bog(t) (1)

Коэффициенты имеют следующие значения:

a2=0,588

a1=0,504

ao=12

bo=31,20

Запишем это уравнение в стандартной форме. Для этого разделим (1) на ao:

+
+y(t)=
g(t)

+T1
+y(t)=kg(t) (2),

где k=

-коэффициент передачи,

T1=

,T22=
-постоянные времени.

Если корни характеристического уравнения для дифференциального уравнения 2-го порядка комплексные (это выполняется при T1<2T2), то оно является колебательным. Проверим это для нашего уравнения:

T1=0,042

2T2=0,14

0,042

Представим данное уравнение в следующем виде:

пусть T2=T,

.

Тогда уравнение (2):

Здесь T - постоянная времени, x - декремент затухания (0<x<1).

Запишем исходное уравнение в операторной форме, используя подстановку p=

.Получим:

(

p2+2xTp+1)y(t)=kg(t) (3)

2. Получим передаточную функцию для колебательного звена. Воспользуемся преобразованиями Лапласа:

y(t) = Y(s)

=sY(s)

=s2Y(s)