Фазовая частотная характеристика (ФЧХ) - это аргумент частотной передаточной функции, т.е.
j(w)=argW(jw)
j(w)=argk - arg(1 - 2xTjw - T2w2)= - arctg
j(w)= - arctg
(9)Для построения логарифмических частотных характеристик вычислим
L(w)=20lg A(w)
L(w)=20lg
7. Построим графики частотных характеристик. Для этого сначала получим их численные значения.
4.1.5. КОЛЕБАТЕЛЬНОЕ КОНСЕРВАТИВНОЕ ЗВЕНО
1. Данное звено описывается следующим уравнением:
a2
+aoy(t) =bog(t) (1)Коэффициенты имеют следующие значения:
a2=0,0588
ao=12
bo=31,20
Запишем это уравнение в стандартной форме. Для этого разделим (1) на ao:
+y(t)= g(t) + y(t)=kg(t) (2),где k=
-коэффициент передачи,T2=
-постоянная времени.Это уравнение является частным случаем колебательного уравнения при x=0.
Запишем исходное уравнение в операторной форме, используя подстановку p=
.Получим:(T2p2+1)y(t)=kg(t) (3)
2. Получим передаточную функцию для колебательного звена. Воспользуемся преобразованиями Лапласа:
y(t) = Y(s)
=s2Y(s)g(t)=G(s)
По определению передаточная функция находится как отношение выходного сигнала к входному. Тогда уравнение (2) будет иметь вид:
T2s2Y(s)+Y(s)=kG(s)
W(s)=
(4)3. Найдем выражения для переходной функции и функции веса. По определению аналитическим выражением переходной функции является решение уравнения (2) при нулевых начальных условиях, т.е. g(t)=1 или по преобразованиями Лапласа
h(t)=H(s)
H(s)=W(s)
=Разложив на элементарные дроби правую часть этого выражения, получим
H(s)=
Заменим
.ТогдаH(s)=
Переходя к оригиналу, получим
h(t)=kЧ1(t)
(5)Функцию веса можно получить из преобразований Лапласа
w(t)=w(s)
w(s)=W(s)Ч1=
= =Переходя к оригиналу, получим
w(t)= kw0sinw0tЧ1(t) (6)
4. Построим графики переходной функции и функции веса. Подставляя исходные данные, вычислим коэффициент передачи, постоянные времени и временные характеристики:
5. Получим частотную передаточную функцию, заменив в передаточной функции (4) s на jw:
W(s)=
W(jw)=
(7)U(w)=
V(w)=0
6. Получим аналитические выражения для частотных характеристик. По определению амплитудная частотная характеристика (АЧХ) - это модуль частотной передаточной функции, т.е.
A(w)=ЅW(jw)Ѕ
A(w)=
=(8)Фазовая частотная характеристика (ФЧХ) - это аргумент частотной передаточной функции, т.е.
j(w)=argW(jw)
j(w)=argk - arg(1-T2w2)=0 (9)
Для построения логарифмических частотных характеристик вычислим
L(w)=20lg A(w)
L(w)=20lg
(10)7. Построим графики частотных характеристик. Для этого сначала получим их численные значения.
4.2. ИНТЕГРИРУЮЩИЕ ЗВЕНЬЯ
4.2.1. ИНТЕГРИРУЮЩЕЕ ИДЕАЛЬНОЕ ЗВЕНО
1. Данное звено описывается следующим уравнением:
a1
=bog(t) (1)Коэффициенты имеют следующие значения:
a1=1,24
bo=4
Запишем это уравнение в стандартной форме. Для этого разделим (1) на a1:
= g(t) =kg(t) (2),где k=
-коэффициент передачи.Запишем исходное уравнение в операторной форме, используя подстановку p=
.Получим:py(t)=kg(t) (3)
2. Получим передаточную функцию для данного звена. Воспользуемся преобразованиями Лапласа:
y(t)=Y(s)
=sY(s)g(t)=G(s)
По определению передаточная функция находится как отношение выходного сигнала к входному. Тогда уравнение (2) будет иметь вид:
sY(s)=kG(s)
W(s)=
(4)3. Найдем выражения для переходной функции и функции веса. По определению аналитическим выражением переходной функции является решение уравнения (2) при нулевых начальных условиях, т.е. g(t)=1 или по преобразованиями Лапласа
h(t)=H(s)
H(s)=W(s)
=Переходя к оригиналу, получим
h(t)=ktЧ1(t) (5)
Функцию веса можно получить дифференцированием переходной функции
w(t)=
w(t)=
=kЧ1(t) (6)4. Построим графики переходной функции и функции веса. Подставляя исходные данные, вычислим коэффициент передачи, постоянные времени и временные характеристики:
5. Получим частотную передаточную функцию, заменив в передаточной функции (4) s на jw:
W(s)=
W(jw)=
(7)W(jw)=
U(w)=0
V(w)=
6. Получим аналитические выражения для частотных характеристик. По определению амплитудная частотная характеристика (АЧХ) - это модуль частотной передаточной функции,т.е.
A(w)=ЅW(jw)Ѕ
A(w)=
= (8)Фазовая частотная характеристика (ФЧХ) - это аргумент частотной передаточной функции, т.е.
j(w)=argW(jw)
j(w)=argk - argjw
j(w)= - arctgw (9)
Для построения логарифмических частотных характеристик вычислим
L(w)=20lg A(w)
L(w)=20lg
7. Построим графики частотных характеристик.Для этого сначала получим их численные значения.
4.2.2. ИНТЕГРИРУЮЩЕЕ ИНЕРЦИОННОЕ ЗВЕНО
1. Данное звено описывается следующим уравнением:
+a1 =bog(t) (1)Коэффициенты имеют следующие значения:
a2=0,0588
a1=0,504
bo=31,20
Запишем это уравнение в стандартной форме. Для этого разделим (1) на a1:
+ = g(t)T
+ =kg(t) (2),где k=
-коэффициент передачи,T=
-постоянная времени.Запишем исходное уравнение в операторной форме, используя подстановку p=
.Получим:(Tp2+p)y(t)=kg(t) (3)
2. Получим передаточную функцию для апериодического звена. Воспользуемся преобразованиями Лапласа: