y(t)=Y(s)
=sY(s) =s2Y(s)g(t)=G(s)
По определению передаточная функция находится как отношение выходного сигнала к входному. Тогда уравнение (2) будет иметь вид:
Ts2Y(s)+sY(s)=kG(s)
W(s)=
(4)3. Найдем выражения для переходной функции и функции веса. По определению аналитическим выражением переходной функции является решение уравнения (2) при нулевых начальных условиях, т.е. g(t)=1 или по преобразованиями Лапласа
h(t)=H(s)
H(s)=W(s)
=Разложив на элементарные дроби правую часть этого выражения, получим
H(s)=
Переходя к оригиналу, получим
h(t)= - kTЧ1(t)+ktЧ1(t)+kT
Ч1(t)==
(5)Функцию веса можно получить из преобразований Лапласа
w(t)=w(s)
w(s)=W(s)Ч1=
Разложив на элементарные дроби правую часть этого выражения, получим
w(s)=
Переходя к оригиналу, получим
w(t)=kЧ1(t)
(6)4. Построим графики переходной функции и функции веса. Подставляя исходные данные, вычислим коэффициент передачи, постоянные времени и временные характеристики:
5. Получим частотную передаточную функцию, заменив в передаточной функции (4) s на jw:
W(s)=
W(jw)=
(7)W(jw)
U(w)=
V(w)=
6. Получим аналитические выражения для частотных характеристик. По определению амплитудная частотная характеристика (АЧХ) - это модуль частотной передаточной функции,т.е.
A(w)=ЅW(jw)Ѕ
A(w)=
= (8)Фазовая частотная характеристика (ФЧХ) - это аргумент частотной передаточной функции, т.е.
j(w)=argW(jw)
j(w)=argk - argjw - arg
j(w)= - arctgw - arctgTw (9)
Для построения логарифмических частотных характеристик вычислим
L(w)=20lg A(w)
L(w)=20lg
7. Построим графики частотных характеристик.Для этого сначала получим их численные значения.
4.2.3. ИЗОДРОМНОЕ ЗВЕНО
1. Данное звено описывается следующим уравнением:
a1
=b1 +bog(t) (1)Коэффициенты имеют следующие значения:
a1=1,24
bo=4
b1=4
Запишем это уравнение в стандартной форме. Для этого разделим (1) на a1:
= + g(t) =k1 +kg(t) (2),где k1=
, k= -коэффициент передачи.Запишем исходное уравнение в операторной форме, используя подстановку p=
.Получим:py(t)=(k1p+k)g(t) (3)
2. Получим передаточную функцию для апериодического звена. Воспользуемся преобразованиями Лапласа:
y(t)=Y(s)
=sY(s)g(t)=G(s)
=sG(t)По определению передаточная функция находится как отношение выходного сигнала к входному. Тогда уравнение (2) будет иметь вид:
sY(s)=k1sG(s)+kG(s)
W(s)=
(4)3. Найдем выражения для переходной функции и функции веса. По определению аналитическим выражением переходной функции является решение уравнения (2) при нулевых начальных условиях, т.е. g(t)=1 или по преобразованиями Лапласа
h(t)=H(s)
H(s)=W(s)
=Переходя к оригиналу, получим
h(t)=
Ч 1(t) (5)Функцию веса можно получить из преобразований Лапласа
w(t)=w(s)
w(s)=W(s)Ч1
W(s)=
Переходя к оригиналу, получим
w(t)= k1Чd(t)+kЧ1(t) (6)
4. Построим графики переходной функции и функции веса. Подставляя исходные данные, вычислим коэффициент передачи, постоянные времени и временные характеристики:
5. Получим частотную передаточную функцию, заменив в передаточной функции (4) s на jw:
W(s)=
W(jw)=
(7)U(w)=k1
V(w)=
6. Получим аналитические выражения для частотных характеристик. По определению амплитудная частотная характеристика (АЧХ) - это модуль частотной передаточной функции,т.е.
A(w)=ЅW(jw)Ѕ
A(w)=............(8)
Фазовая частотная характеристика (ФЧХ) - это аргумент частотной передаточной функции, т.е.
j(w)=argW(jw)
j(w)=............
j(w)=............ (9)
Для построения логарифмических частотных характеристик вычислим
L(w)=20lg A(w)
L(w)=20lg........
7. Построим графики частотных характеристик.Для этого сначала получим их численные значения.
4.3.1.ДИФФЕРЕНЦИРУЮЩЕЕ ИДЕАЛЬНОЕ ЗВЕНО
1. Данное звено описывается следующим уравнением:
aoy(t)=b1
(1)Коэффициенты имеют следующие значения:
ao=2
b1=4
Запишем это уравнение в стандартной форме. Для этого разделим (1) на ao:
y(t)=
y(t)=k
(2),где k=
-коэффициент передачи.Запишем исходное уравнение в операторной форме, используя подстановку p=
.Получим:y(t)=kpg(t) (3)
2. Получим передаточную функцию для идеального звена. Воспользуемся преобразованиями Лапласа:
y(t)=Y(s)
g(t)=G(s)
=sG(s)По определению передаточная функция находится как отношение выходного сигнала к входному. Тогда уравнение (2) будет иметь вид:
Y(s)=ksG(s)
W(s)=ks (4)
3. Найдем выражения для переходной функции и функции веса из преобразлваний Лапласа,т.е.
h(t)=H(s)
H(s)=W(s)
=kПереходя к оригиналу, получим
h(t)=kЧd(t) (5)
Функцию веса можно получить по преобразованию Лапласа из передаточной функции:
w(t)=w(s)
w(s)=W(s)Ч1=ks
Переходя к оригиналу, получим
w(t)=k
(6)4. Построим графики переходной функции и функции веса. Подставляя исходные данные, вычислим коэффициент передачи и временные характеристики:
5. Получим частотную передаточную функцию, заменив в передаточной функции (4) s на jw:
W(s)=ks
W(jw)=jkw (7)
W(jw)=U(w)+jV(w)
U(w)=0
V(w)=kw
6. Получим аналитические выражения для частотных характеристик. По определению амплитудная частотная характеристика (АЧХ) - это модуль частотной передаточной функции, т.е.
A(w)=ЅW(jw)Ѕ
A(w)=kЅwЅ (8)
Фазовая частотная характеристика (ФЧХ) - это аргумент частотной передаточной функции, т.е.
j(w)=argW(jw)
j(w)=arctgkw (9)
Для построения логарифмических частотных характеристик вычислим
L(w)=20lg A(w)
L(w)=20lgkЅwЅ
7. Построим графики частотных характеристик. Для этого сначала получим их численные выражения.
4.3.2.ДИФФЕРЕНЦИРУЮЩЕЕ РЕАЛЬНОЕ ЗВЕНО
1. Данное звено описывается следующим уравнением:
a1
+aoy(t) =b1 (1)Коэффициенты имеют следующие значения:
a1=1,24
ao=2
b1=4
Запишем это уравнение в стандартной форме. Для этого разделим (1) на a1: