Смекни!
smekni.com

Дифференцированные уравнения (стр. 6 из 7)

y(t)=Y(s)

=sY(s)

=s2Y(s)

g(t)=G(s)

По определению передаточная функция находится как отношение выходного сигнала к входному. Тогда уравнение (2) будет иметь вид:

Ts2Y(s)+sY(s)=kG(s)

W(s)=

(4)

3. Найдем выражения для переходной функции и функции веса. По определению аналитическим выражением переходной функции является решение уравнения (2) при нулевых начальных условиях, т.е. g(t)=1 или по преобразованиями Лапласа

h(t)=H(s)

H(s)=W(s)

=

Разложив на элементарные дроби правую часть этого выражения, получим

H(s)=

Переходя к оригиналу, получим

h(t)= - kTЧ1(t)+ktЧ1(t)+kT

Ч1(t)=

=

(5)

Функцию веса можно получить из преобразований Лапласа

w(t)=w(s)

w(s)=W(s)Ч1=

Разложив на элементарные дроби правую часть этого выражения, получим

w(s)=

Переходя к оригиналу, получим

w(t)=kЧ1(t)

(6)

4. Построим графики переходной функции и функции веса. Подставляя исходные данные, вычислим коэффициент передачи, постоянные времени и временные характеристики:

5. Получим частотную передаточную функцию, заменив в передаточной функции (4) s на jw:

W(s)=

W(jw)=

(7)

W(jw)

U(w)=

V(w)=

6. Получим аналитические выражения для частотных характеристик. По определению амплитудная частотная характеристика (АЧХ) - это модуль частотной передаточной функции,т.е.

A(w)=ЅW(jw)Ѕ

A(w)=

=
(8)

Фазовая частотная характеристика (ФЧХ) - это аргумент частотной передаточной функции, т.е.

j(w)=argW(jw)

j(w)=argk - argjw - arg

j(w)= - arctgw - arctgTw (9)

Для построения логарифмических частотных характеристик вычислим

L(w)=20lg A(w)

L(w)=20lg

7. Построим графики частотных характеристик.Для этого сначала получим их численные значения.

4.2.3. ИЗОДРОМНОЕ ЗВЕНО

1. Данное звено описывается следующим уравнением:

a1

=b1
+bog(t) (1)

Коэффициенты имеют следующие значения:

a1=1,24

bo=4

b1=4

Запишем это уравнение в стандартной форме. Для этого разделим (1) на a1:

=
+
g(t)

=k1
+kg(t) (2),

где k1=

, k=
-коэффициент передачи.

Запишем исходное уравнение в операторной форме, используя подстановку p=

.Получим:

py(t)=(k1p+k)g(t) (3)

2. Получим передаточную функцию для апериодического звена. Воспользуемся преобразованиями Лапласа:

y(t)=Y(s)

=sY(s)

g(t)=G(s)

=sG(t)

По определению передаточная функция находится как отношение выходного сигнала к входному. Тогда уравнение (2) будет иметь вид:

sY(s)=k1sG(s)+kG(s)

W(s)=

(4)

3. Найдем выражения для переходной функции и функции веса. По определению аналитическим выражением переходной функции является решение уравнения (2) при нулевых начальных условиях, т.е. g(t)=1 или по преобразованиями Лапласа

h(t)=H(s)

H(s)=W(s)

=

Переходя к оригиналу, получим

h(t)=

Ч 1(t) (5)

Функцию веса можно получить из преобразований Лапласа

w(t)=w(s)

w(s)=W(s)Ч1

W(s)=

Переходя к оригиналу, получим

w(t)= k1Чd(t)+kЧ1(t) (6)

4. Построим графики переходной функции и функции веса. Подставляя исходные данные, вычислим коэффициент передачи, постоянные времени и временные характеристики:

5. Получим частотную передаточную функцию, заменив в передаточной функции (4) s на jw:

W(s)=

W(jw)=

(7)

U(w)=k1

V(w)=

6. Получим аналитические выражения для частотных характеристик. По определению амплитудная частотная характеристика (АЧХ) - это модуль частотной передаточной функции,т.е.

A(w)=ЅW(jw)Ѕ

A(w)=............(8)

Фазовая частотная характеристика (ФЧХ) - это аргумент частотной передаточной функции, т.е.

j(w)=argW(jw)

j(w)=............

j(w)=............ (9)

Для построения логарифмических частотных характеристик вычислим

L(w)=20lg A(w)

L(w)=20lg........

7. Построим графики частотных характеристик.Для этого сначала получим их численные значения.

4.3.1.ДИФФЕРЕНЦИРУЮЩЕЕ ИДЕАЛЬНОЕ ЗВЕНО

1. Данное звено описывается следующим уравнением:

aoy(t)=b1

(1)

Коэффициенты имеют следующие значения:

ao=2

b1=4

Запишем это уравнение в стандартной форме. Для этого разделим (1) на ao:

y(t)=

y(t)=k

(2),

где k=

-коэффициент передачи.

Запишем исходное уравнение в операторной форме, используя подстановку p=

.Получим:

y(t)=kpg(t) (3)

2. Получим передаточную функцию для идеального звена. Воспользуемся преобразованиями Лапласа:

y(t)=Y(s)

g(t)=G(s)

=sG(s)

По определению передаточная функция находится как отношение выходного сигнала к входному. Тогда уравнение (2) будет иметь вид:

Y(s)=ksG(s)

W(s)=ks (4)

3. Найдем выражения для переходной функции и функции веса из преобразлваний Лапласа,т.е.

h(t)=H(s)

H(s)=W(s)

=k

Переходя к оригиналу, получим

h(t)=kЧd(t) (5)

Функцию веса можно получить по преобразованию Лапласа из передаточной функции:

w(t)=w(s)

w(s)=W(s)Ч1=ks

Переходя к оригиналу, получим

w(t)=k

(6)

4. Построим графики переходной функции и функции веса. Подставляя исходные данные, вычислим коэффициент передачи и временные характеристики:

5. Получим частотную передаточную функцию, заменив в передаточной функции (4) s на jw:

W(s)=ks

W(jw)=jkw (7)

W(jw)=U(w)+jV(w)

U(w)=0

V(w)=kw

6. Получим аналитические выражения для частотных характеристик. По определению амплитудная частотная характеристика (АЧХ) - это модуль частотной передаточной функции, т.е.

A(w)=ЅW(jw)Ѕ

A(w)=kЅwЅ (8)

Фазовая частотная характеристика (ФЧХ) - это аргумент частотной передаточной функции, т.е.

j(w)=argW(jw)

j(w)=arctgkw (9)

Для построения логарифмических частотных характеристик вычислим

L(w)=20lg A(w)

L(w)=20lgkЅwЅ

7. Построим графики частотных характеристик. Для этого сначала получим их численные выражения.

4.3.2.ДИФФЕРЕНЦИРУЮЩЕЕ РЕАЛЬНОЕ ЗВЕНО

1. Данное звено описывается следующим уравнением:

a1

+aoy(t) =b1
(1)

Коэффициенты имеют следующие значения:

a1=1,24

ao=2

b1=4

Запишем это уравнение в стандартной форме. Для этого разделим (1) на a1: