T
+y(t)=k (2),где k=
-коэффициент передачи,T1=
-постоянная времени.Запишем исходное уравнение в операторной форме, используя подстановку p=
.Получим:(Tp+1)y(t)=kpg(t) (3)
2. Получим передаточную функцию для апериодического звена. Воспользуемся преобразованиями Лапласа:
y(t)=Y(s)
=sY(s)g(t)=G(s)
=sG(s)По определению передаточная функция находится как отношение выходного сигнала к входному. Тогда уравнение (2) будет иметь вид:
TsY(s)+Y(s)=ksG(s)
W(s)=
(4)3. Найдем выражения для переходной функции и функции веса. По определению аналитическим выражением переходной функции является решение уравнения (2) при нулевых начальных условиях, т.е. g(t)=1 или по преобразованиями Лапласа
h(t)=H(s)
H(s)=W(s)
= =Переходя к оригиналу, получим
h(t)=
Ч1(t) (5)Функцию веса можно получить из преобразований Лапласа
w(t)=w(s)
w(s)=W(s)Ч1
W(s)=
=Переходя к оригиналу, получим
w(t)=
Чd(t) e Ч1(t) (6)4. Построим графики переходной функции и функции веса. Подставляя исходные данные, вычислим коэффициент передачи, постоянные времени и временные характеристики:
5. Получим частотную передаточную функцию, заменив в передаточной функции (4) s на jw:
W(s)=
W(jw)=
W(jw)=
=6.Найдем АЧХ:
A(w)=ЅW(jw)Ѕ
A(w)=
=Найдем ФЧХ:
j(w)=argW(jw)
j(w)=arctgkw-arctgTw
L(w)=20lgA(w)
L(w)=20lg
4.3.3.ФОРСИРУЮЩЕЕ ЗВЕНО 1-го ПОРЯДКА
Данное звено описывается следующим уравнением:
a0y(t)=b1
+b0g(t)y(t)=
+ g(t)k1=
k=
p=
y(t)=k1pg(t)+kg(t)
y(t)=Y(s)
g(t)=G(s)
Y(s)=k1sG(s)+kG(s)
W(s)=k1s+k
H(s)=
=k1+h(t)=k1d(t)+k1(t)
W(jw)=k1jw+k
U(w)=k
V(w)=k1w
A(w)=ЅW(jw)Ѕ
A(w)=
j(w)=argW(jw)
j(w)=arctg
L(w)=20lgA(w)
L(w)=20lg
4.3.4.ФОРСИРУЮЩЕЕ ЗВЕНО 2-го ПОРЯДКА
a0y(t)=b2
+b1 +b0g(t)y(t)=
+ + g(t)y(t)=k2
+k1 +kg(t)y(t)=k2p2g(t)+k1pg(t)+kg(t)
Y(s)=(k2s2+k1s+k)G(s)
W(s)=k2s2+k1s+k
H(s)=k2s+k1+
h(t)=k2
+k1d(t)+k11(t)w(s)=W(s)=k2s2+k1s+k
w(t)=k2
+k1 +kd(t)W(jw)=k1jw+k - k2w2
U(w)=k - k2w2
V(w)=k1jw
A(w)=
j(w)=arctg
L(w)=20lg