Смекни!
smekni.com

Задача Лагранжа (стр. 5 из 7)

Заметим здесь, что полученный допустимый интервал значений q не симметричен относительно qо, поскольку в сторону уменьшения значений q можно отклониться от qo на 632 – 341 = 291 единиц, а в сторону увеличения значений q можно отклоняться от q0 на 1176 – 632 = 544 единиц.

Такая асимметричность допустимых значений q относительно q0 легко объясняется из графика функции Q на рис.1: при отклонении влево от q0 график функции возрастает “быстрее”, чем при отклонении на такую же величину вправо от q0.

Рассмотренная выше модель конечно же достаточно проста и может применяться только на предприятиях реализующих один тип товара, что встречается крайне редко. Обычно у любого торгового предприятия имеются запасы самых различных товаров. Если при этом товар не является взаимозаменяемыми, то определение оптимальных размеров запасов производится отдельно по каждому товару, как это было показано выше. Взаимозаменяемые товары целесообразно объединить в группы и для них производить оптимизацию товарных запасов как для отдельных товаров. На практике, однако, не всегда можно воспользоваться такими рекомендациями, поскольку могут возникнуть другие ограничительные условия, в частности ограниченность размеров складских помещений. Такие ограничительные условия приводят к тому, чтооптимальная по величине партия товара не может быть размещена в имеющийся складской емкости. Рассматриваемая далее модель учитывает такие ограничения.


7. Модель II. Модель Уилсона с ограничениями на складские помещения

Пусть торговое предприятие в течении периода времени Т должно завести и реализовать n видов товара. Соответственно обозначим:

Ri - полный спрос i – го товара за время Т;

C1i – стоимость хранения одной единицы i-го товара планируемом периоде времени;

CSi - расходы по завозу одной партии i – го товара;

Vi - объем складского помещения занимаемый одной единицей i –го товара.

V - вся ёмкость складского помещения.

Все эти значения считаются заранее известными. Неизвестный пока размер одной поставки i-го товара обозначим через qi, а через qio будем в дальнейшем обозначать оптимальный размер одной поставки i-го товара.


Тогда в соответствии с (2) полные издержки по завозу и хранению i-го товара будут равны:

а суммарные издержки по всем видам товара принимают вид:

Далее Vi * qi – объем складских помещений, которые занимают i-ый вид товара, åViqi - объем складских помещений, занимаемых всеми видами товара и должно выполняться очевидные соотношения,

qi£ Ri, qi³ 0 (30).

Итак, приходим к следующей задаче Лагранжа:

Найти минимум нелинейной функции (12) при линейных ограничениях (29) и (30). Функция Лагранжа рассматриваемой задачи (28) – (30) имеет вид:


Функция Лагранжа (31) совпадает с целевой функцией (28) в случаи если в (31)

или

Следуя алгоритму решения задачи Лагранжа, найдем частные производные функции (31) по всем qi и прировняем их к нулю:


Каждое из уравнений системы (34) определяет соответствующее значение


где в правой части все значения параметров известны за исключением множителя l. Для определения значения подставим выражения qi в условие (32). Получаем:


В соотношении (36) все величины, кроме l, заранее известны, т.е. оно является иррациональным уравнением с одним неизвестным. Его всегда можно разрешить относительно множителя l. Найдя значения l = l0, можно определить оптимальные величины поставок каждого из товаров по формулам:

Теперь можно рассматривать конкретный пример.

Пусть торговое предприятие намерено завести и реализовать товар трех видов (n = 3) объемами соответственно 24 тыс. ед, 20 тыс. ед. и 16 тыс. ед. Весь объем складских помещений составляет 18 000 куб. м. Стоимость хранения одной единицы первого вида товара 6 руб., второго – 8 руб., третьего – 10 руб. Расходы по завозу одной партии первого вида товара 1200 руб., второго – 1600 руб., третьего – 2000 руб. При этом одна единица первого вида товара занимает 3 куб. м., второго – 4 куб. м., третьего – 5 куб. м. Найти оптимальные размеры поставок каждого из видов товара. По условию имеем:

R1 = 24000, R2 = 20000, R3 = 16000;

C11 = 6, C12 = 8, C13 = 10;

Cs1 = 1200, Cs2 = 1600, Cs3 = 2000;

V1 = 3, V2 = 4, V3 = 5;

V = 18000;


Составляем уравнение вида (36) для определения значения множителя l;

или

откуда lо = - 2,41.


Найдем величины оптимальных поставок каждого из товаров по формулам (37):

Проверим выполнимость условия (29) при найденных объемах оптимальных поставок. Должно выполняться:

V1 * q1о + V2 * q2о + V3 * q3о£V = 18000.

Имеем:

3 * 1677 + 4 * 1531 + 5 * 1369 = 5031 + 6124 + 6845 = 18000.

Выполнимость неравенства (29) служит подтверждением того, что объемы оптимальных поставок определены верно. Более того. Неравенство (29) в нашем примере выполнилось как равенство, что говорит о том, что при первом завозе товара все складские помещения будут заполнены максимально полно. С течением времени, при последующих завозах товара, картина будет конечно же не столь идеальной и какая та часть складских помещений будет не заполнена.

Здесь можем заметить одну небольшую “уловку” в этом примере исходные данные в примере подобраны так, что иррациональное уравнение (*) вида (36) имеет во всех трех слагаемых один и тот же знаменатель, что конечно же упрощает решение уравнения. Эта “уловка” использована для облегчения рассмотрения примера, поскольку нашей главной целью в настоящий момент не является возможность разрешения иррационального уравнения. И тем не менее, возникает вопрос: а что же делать, когда при использовании этой модели на практике исходные данные будут таковы, что нашей “уловкой” воспользоваться будет невозможно. Ответ на этот вопрос достаточно прост: в современной математике разработаны десятки методов приближенных решений уравнений и потому значения множителя l можно определить из уравнения (36) приближенно с любой степенью точности. К тому же несмотря на нашу “уловку” облегчающую нахождения значения l, тем не менее мы определили его приближение. С учетом выше сказанного, можем прийти к выводу, что использованная “уловка” не сужается общностью рассмотрения модели.


8. Рацион Робинзона

Обратимся теперь к задаче о потреблении примерно в таком виде, в каком ее ставил Госсен.

Человек может потреблять блага n видов в количествах хi, i = 1, …, n. Общая полезность потребления i-того блага описывается функцией TUi(xi). Предельная полезность MUi(хi) = dTUi(хi)/dxi убывает с ростом хi - в этом состоит закон Госсена. Полезность потребления всех: благ суммируется по отдельным благам, так что

Будем считать, опять-таки следуя Госсену, что потребительские возможностичеловека ограничены лишь временем, которое он может затачивать на добывание и потребление благ, как это имело место у Робинзона Крузо. Если на единицу i-того блага ему приходится тратить ti единиц времени, то ресурсное ограничение выражается равенством

где Т — фонд времени, выделяемый на потребление благ.

Задача рационального потребления теперь сводится к определению такого “рациона” - набора благ Х = (х1,…,хn), - который доставляет максимум TU(X) при ограничении (38).

Лагранжиан этой задачи:

.