Теорема доказана.
Число k называют индексом подгруппы Н в группе G и обозначают [G:H]. Из доказательства теоремы Лагранжа мы получаем, что имеет место равенство |G|=|H|[G:H].
Так как порядок циклической подгруппы, порожденной перестановкой
Теорема Лагранжа позволяет существенно упростить решение задачи описания всех подгрупп данной группы. Например, собственные подгруппы из симметрической группы S3 могут состоять из двух и трех перестановок (делители числа 3!=6), поэтому не нужно непосредственно проверять являются ли подгруппами группы S3 подмножество, состоящее из 4 или 5 перестановок. А ведь эта проверка длинная, так как есть
1.5. СЛЕДСТВИЯ ИЗ ТЕОРЕМЫ ЛАГРАНЖА
Сформулируем некоторые непосредственные следствия из теоремы Лагранжа о порядках подгрупп.
Теорема: если порядок группы G есть простое число, то:
1) группа G не имеет собственных подгрупп;
2) группа G является циклической.
Доказательство.
Утверждение 1) следует непосредственно из теоремы Лагранжа и определения простого числа.
Для доказательства утверждения 2) обозначим через
Если порядок
Теорема доказана.
Из теоремы Лагранжа следует только то, что если в группе G есть подгруппа Н, то порядок группы G кратен порядку группы Н. Но для нас остается открытым вопрос, верно ли обратное утверждение: если порядок группы G равен g, а h – делитель числа g, то обязательно ли группа G имеет подгруппу порядка h? Для доказательства того факта, что это обратное утверждение не верно можно использовать знакопеременную группу А4. Эта группа имеет порядок 12, но в ней нет подгрупп порядка 6. Таким образом, утверждение, обратное к теореме Лагранжа, не верно.
Однако некоторое достаточное условие для того, чтобы группа G порядка g имела подгруппу порядка h, где h – делитель числа g, указывается в следующей теореме Силова.
Теорема Силова: пусть G – группа порядка g и h – делитель числа g; если h=pn, где р – простое число, а n – положительное целое число, то G содержит подгруппу порядка h.
Теорема Силова существенно облегчает процесс нахождения подгрупп некоторой группы. Так, например, порядок группы А4 равен 12; простыми делителями числа 12 являются 2 и 3. По теореме Силова мы можем утверждать, что знакопеременная группа А4 содержит подгруппы порядка 2, 3 и 4=22, но мы все равно ничего не можем сказать о подгруппе порядка 6.
Исходя из всего выше описанного, можно сделать вывод о том, что теорема Лагранжа и непосредственные следствия из этой теоремы играют важную роль в теории групп. Они очень часто применяются как в самой теории групп, так и во всех ее приложениях.
1.6. ЗАДАЧИ
1. Описать все подгруппы симметрической группы S3.
Решение.
Порядок группы S3 равен 3!=6. из теоремы Лагранжа следует, что собственные подгруппы из S3 могут состоять из двух или трех перестановок. Следовательно, подмножества S3, состоящие из четырех или пяти перестановок, подгрупп не образуют.
1) Опишем сначала подгруппы, которые состоят из двух перестановок. Если Н – такая подгруппа, то в нее входит элемент Е и еще какой-то другой элемент
Элемент обратный к
Таким образом, существует не больше трех подгрупп второго порядка группы S3. эти подгруппы легко находятся с помощью таблицы Кэли. Это будут такие подмножества:
Для подмножества А:
Для подмножества В:
Для подмножества С:
2) Теперь опишем подгруппы, которые состоят из трех перестановок. Если
Следовательно, произведение
Таким образом, перестановки