Смекни!
smekni.com

Интеграл и его свойства (стр. 1 из 6)

Теоретические вопросы

    Понятие первообразной функции. Теорема о первообразных.

Основной задачей дифференциального исчисления является нахождение производной f’(x) или дифференциала df=f’(x)dxфункции f(x). В интегральном исчислении решается обратная задача. По заданной функции f(x) требуется найти такую функцию F(x), что F’(х)=f(x) или dF(x)=F’(x)dx=f(x)dx.

Таким образом, основной задачей интегрального исчисления является восстановление функции F(x) по известной производной (дифференциалу) этой функции. Интегральное исчисление имеет многочисленные приложения в геометрии, механике, физике и технике. Оно дает общий метод нахождения площадей, объемов, центров тяжести и т. д..

Определение.Функция F(x),

, называется первообразной для функции f(x) на множестве Х, если она дифференцируема для любого
и
F’(x)=f(x) или dF(x)=f(x)dx.

Теорема.Любая непрерывная на отрезке [a; b] функция f(x) имеет на этом отрезке первообразную F(x).

Теорема. Если F1(x) и F2(x) – две различные первообразные одной и той же функции f(x) на множестве х , то они отличаются друг от друга постоянным слагаемым, т. е. F2(x)=F1x)+C, где С – постоянная.

    Неопределенный интеграл, его свойства.

Определение.Совокупность F(x)+C всех первообразных функции f(x) на множестве Х называется неопределенным интегралом и обозначается:

- (1)

В формуле (1) f(x)dxназывается подынтегральным выражением, f(x) – подынтегральной функцией, х – переменной интегрирования, а С – постоянной интегрирования.

Рассмотрим свойства неопределенного интеграла, вытекающие из его определения.

1. Производная из неопределенного интеграла равна подынтегральной функции, дифференциал неопределенного интеграла равен подынтегральному выражению:

и
.

2. Неопределенный интеграл от дифференциала некоторой функции равен сумме этой функции и произвольной постоянной:

3. Постоянный множитель а (а≠0) можно выносить за знак неопределенного интеграла:

4. Неопределенный интеграл от алгебраической суммы конечного числа функций равен алгебраической сумме интегралов от этих функций:

5. Если F(x) – первообразная функции f(x), то:

6 (инвариантность формул интегрирования). Любая формула интегрирования сохраняет свой вид, если переменную интегрирования заменить любой дифференцируемой функцией этой переменной:

где u – дифференцируемая функция.

    Таблица неопределенных интегралов.

Приведем основные правила интегрирования функций.

I.

II.

III.

IV.

V.

VI.

Приведем таблицу основных неопределенных интегралов. (Отметим, что здесь, как и в дифференциальном исчислении, буква u может обозначать как независимую переменную (u=x), так и функцию от независимой переменной (u=u(x)).)


1.

(n≠-1).

2.

(a >0, a≠1).

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

(a≠0).

15.

(a≠0).

16.

(|u| > |a|).

17.

(|u| < |a|).

18.

19.


Интегралы 1 – 17 называют табличными.

Некоторые из приведенных выше формул таблицы интегралов, не имеющие аналога в таблице производных, проверяются дифференцированием их правых частей.

    Замена переменной и интегрирование по частям в неопределенном интеграле.

Интегрирование подстановкой (замена переменной). Пусть требуется вычислить интеграл

, который не является табличным. Суть метода подстановки состоит в том, что в интеграле
переменную х заменяют переменной t по формуле x=φ(t), откуда dx=φ’(t)dt.

Теорема. Пусть функция x=φ(t) определена и дифференцируема на некотором множестве Т и пусть Х – множество значений этой функции, на котором определена функция f(x). Тогда если на множестве Х функция f(x) имеет первообразную, то на множестве Т справедлива формула:

- (2)

Формула (1) называется формулой замены переменной в неопределенном интеграле.

Интегрирование по частям. Метод интегрирования по частям следует из формулы дифференциала произведения двух функций. Пусть u(x) и v(x) – две дифференцируемые функции переменной х. Тогда:

d(uv)=udv+vdu. – (3)

Интегрируя обе части равенства (3), получаем:

Но так как

, то:

- (4)

Соотношение (4) называется формулой интегрирования по частям. С помощью этой формулы отыскание интеграла

. Применять ее целесообразно, когда интеграл в правой части формулы (4) более прост для вычисления, нежели исходный.

В формуле (4) отсутствует произвольная постоянная С, так как в правой части этой формулы стоит неопределенный интеграл, содержащий произвольную постоянную.

Приведем некоторые часто встречающиеся типы интегралов, вычисляемых методом интегрирования по частям.

I. Интегралы вида

,
,
(Pn(x) – многочлен степени n, k– некоторое число). Чтобы найти эти интегралы, достаточно положить u=Pn(x) и применить формулу (4) n раз.

II. Интегралы вида

,
,
,
,
(Pn(x) – многочлен степени nотносительно х). Их можно найти по частым, принимая за u функцию, являющуюся множителем при Pn(x).