Смекни!
smekni.com

Исследование распределения температуры в тонком цилиндрическом стержне (стр. 2 из 3)

D - главный определитель нормальной системы.

В нашем случае:

S0=3.5438 10-22

S1=-8.9667 10-14

S2=6.3247 10-7


Откуда:

Найденные оценки коэффициентов распределены по нормальному закону, т.к. линейно зависят от линейно распределённых экспериментальных данных Ui.

Известно, что эти оценки несмещённые и эффективные. Тогда случайные величины:

Имеют распределения Стьюдента, а r = 3.


Выбираем доверительную вероятность b=0,9 и по таблице Стьюдента находим критическое значение gb равное 2,35, удовлетворяющее равенству:

Доверительные интервалы для коэффициентов:

(2.4*)


В нашем случае примут вид:

2.2 Проверка статистической гипотезы об адекватности модели задачи регрессии.


Имеется выборка объёма n экспериментальных значений (xi;Ui). Предполагаем, что ошибки измерения xiпренебрежимо малы, а случайные ошибки измерения температур Uiподчинены нормальному закону с постоянной дисперсией s2. Мы выбрали функцию регрессии в виде:

Выясним, нельзя ли было ограничиться многочленом второго порядка, т.е. функцией вида:

(2.5)


C помощью МНК можно найти оценки этих функций и несмещённый оценки дисперсии отдельного измерения Ui для этих случаев:

Где r1 = 4 (количество точек – 6, параметра – 2).


Нормальная система уравнений для определения новых оценок коэффициентов функции (2.5)с помощью МНК имеет вид:

(2.7)


Решая эту систему методом Гаусса, получим:

(2.8)

Чем лучше функция регрессии описывает эксперимент, тем меньше для неё должна быть оценка дисперсии отдельного измерения Ui, т.к. при плохом выборе функции в дисперсию войдут связанные с этим выбором дополнительные погрешности. Поэтому для того, чтобы сделать выбор между функциями U(x) и U(1)(x) нужно проверить значимость различия между соответствующими оценками дисперсии, т.е. проверить гипотезу:


Н0 – альтернативная гипотеза

Т.е. проверить, значимо ли уменьшение дисперсии при увеличении степени многочлена.


В качестве статического критерия рассмотрим случайную величину, равную:

(2.9)

имеющую распределение Фишера с(r ; r1) степенями свободы.Выбираем уровень распределения Фишера, находим критическое значение F*a, удовлетворяющее равенству: p(F>F*a)=a

В нашем случае F=349.02, а F*a=10,13.


Если бы выполнилось практически невозможное соотношение F>Fa, имевшее вероятность 0,01, то гипотезу Н0 пришлось бы отклонить. Но в нашем случае можно ограничиться многочленом

, коэффициенты в котором неодинаковы.

3. Нахождение коэффициента теплопроводности a.


Коэффициент a вычислим по формуле (1.5), обозначим:

(3.1)

Определим допустимую абсолютную погрешность величины интеграла I, исходя из требования, чтобы относительная погрешность вычисления a не превосходила 0,1%, т.е.:

(3.2)


Т.к. из (3.1) очевидно, что a>a0, то условие (3.2) заведомо будет выполнено, если:

(3.3)

Т.е. в качестве предельно допустимой абсолютной погрешности вычисления интеграла I возьмём d=0,001Т (3.4)

Т=218 оС, следовательно, d=0,218 оС.

3.1 Вычисление интеграла I методом трапеции

Использование теоретической оценки погрешности


Для обозначения требуемой точности количества частей n, на которые нужно разбить отрезок интегрирования [0;T] определяется по формуле:

, где M2=[f”(t)], t e [0;T], f(t)=e-bt3


Учитывая формулу (3.4) получаем:

(3.5)


Дифференцируя f(t), получим:

А необходимое условие экстремума: f”(t)-f’’’(t)=0, откуда получаем:

Далее вычисляем значения f’’(t) при t=t1, t=t2, t=0 и t=T, получаем:

f’’(t1)=1.5886 10-4

f’’(t2)=-1.6627 10-4

f’’(0)=0

f’’(T)=7.4782 10-6

Итак: M2=1,5886 10-4, откуда n=25.66; принимаем N=26.


Далее вычислим интеграл I:

Погрешность вычисления a:


3.2 Вычисление интеграла I методом парабол


При расчётах будем использовать теоретическую оценку погрешности с помощью правила Рунге. Для обеспечения заданной точности количество частей n, на которое следует разделить интервал интегрирования можно определить по формуле:

, откуда:

Нахождение М4 можно провести аналогично нахождению М2 в предыдущем пункте, но выражение для fIV(t) имеет довольно громоздкий вид. Поэтому правило Рунге – наиболее простой способ.

Обозначим через Inи I2nзначение интеграла I, полученное при разбиении промежутка интегрирования соответственно на n и 2n интервалов. Если выполнено равенство: |I2n-In| = 15d (*1), то |I-I2n|=d


Будем , начиная с n=2, удваивать n до тех пор, пока не начнёт выполняться неравенство (*1), тогда:

(3.6)


Согласно формуле парабол (3.7):

Результаты вычислений сведём в таблицу:

n In I2n
4 102.11
8 101.61 0.5017

По формуле (3.7) I = 101,61 что в пределах погрешности совпадает со значением, полученным по методу трапеций

n=8 n=4
ti (8) y8 ti (4) y4
0 1 0 1
27.25 0.9864
54.5 0.8959 54.5 0.8959
81.75 0.6901
109 0.4151 109 0.4151
136.25 0.1796
163.5 0.0514 163.5 0.0514
190.75 0.0089874
218 0.00088179 218 0.00088179

4. Вычисление времени Т0 установления режима