Смекни!
smekni.com

Комбинаторика (стр. 2 из 2)

Тут пуще прежнего пошли у низ раздоры

И споры,

Кому и как сидеть…

Вероятно, крыловские музыканты так и не перепробовали всех возможных мест. Однако способов не так уж и много. Сколько?

Здесь идет перестановка из четырех, значит, возможно

P4=4!=24 варианта перестановок.


Сочетания без повторений

Сочетанием без повторений называется такое размещение, при котором порядок следования элементов не имеет значения.

Всякое подмножество X состоящее из m элементов, называется сочетанием из n элементов по m.

Таким образом, количество вариантов при сочетании будет меньше количества размещений.

Число сочетаний из n элементов по m обозначается

.

.

Примеры задач

Сколько трехкнопочных комбинаций существует на кодовом замке (все три кнопки нажимаются одновременно), если на нем всего 10 цифр.

Решение:

Так как кнопки нажимаются одновременно, то выбор этих трех кнопок – сочетание. Отсюда возможно

вариантов.

У одного человека 7 книг по математике, а у второго – 9. Сколькими способами они могут обменять друг у друга две книги на две книги.

Решение:

Так как надо порядок следования книг не имеет значения, то выбор 2ух книг - сочетание. Первый человек может выбрать 2 книги

способами. Второй человек может выбрать 2 книги
. Значит всего по правилу произведения возможно 21*36=756 вариантов.

При игре в домино 4 игрока делят поровну 28 костей. Сколькими способами они могут это сделать?

Первый игрок делает выбор из 28 костей. Второй из 28-7=21 костей, третий 14, а четвертый игрок забирает оставшиеся кости. Следовательно, возможно

.
Размещения и сочетания с повторениями

Часто в задачах по комбинаторике встречаются множества, в которых какие-либо компоненты повторяются. Например: в задачах на числа – цифры. Для таких задач при размещениях используется формула

, а для сочетаний
.

Примеры задач

Сколько трехзначных чисел можно составить из цифр 1, 2, 3, 4, 5?

Решение. Так как порядок цифр в числе существенен, цифры могут повторяться, то это будут размещения с повторениями из пяти элементов по три, а их число равно

.

В кондитерском магазине продавались 4 сорта пироженных: эклеры, песочные, наполеоны и слоеные. Сколькими способами можно купить 7 пироженных.

Решение: Покупка не зависит от того, в каком порядке укладывают купленные пироженные в коробку. Покупки будут различными, если они отличаются количеством купленных пирожных хотя бы одного сорта. Следовательно, количество различных покупок равно числу сочетаний четырех видов пироженных по семь -

.

Обезьяну посадили за пишущую машинку с 45 клавишами, определить число попыток, необходимых для того, чтобы она наверняка напечатала первую строку романа Л.Н. Толстого «Анна Каренина», если строка содержит 52 знака и повторений не будет?

Решение: порядок букв имеет значение. Буквы могут повторяться. Значит, всего есть

вариантов.

Перестановки с повторениями

, где n-количество всех элементов, n1,n2,…,nr-количество одинаковых элементов.

Примеры задач

Сколькими способами можно переставить буквы слова «ананас»?

Решение: всего букв 6. Из них одинаковы n1«а»=3, n2«н»=2, n3«с»=1. Следовательно, число различных перестановок равно

.

Задачи для самостоятельного решения

Сколько перестановок можно сделать из букв слова «Миссисипи».

Ответ: 2520

Имеется пять различных стульев и семь рулонов обивочной ткани различных цветов. Сколькими способами можно осуществить обивку стульев.

Ответ: 16807

На памятные сувениры в «Поле Чудес» спонсоры предлагают кофеварки, утюги, телефонные аппараты, духи. Сколькими способами 9 участников игры могут получить эти сувениры? Сколькими способами могут быть выбраны 9 предметов для участников игры?

Ответ: 49, 220

Сколькими способами можно расставить на шахматной доске 8 ладей так, чтобы на одна из них не могла бить другую?

Ответ: 40320

Сколько может быть случая выбора 2 карандашей и 3 ручек из пяти различных карандашей и шести различных ручек?

Ответ:200

Сколько способов раздачи карт на 4 человека существует в игре «Верю ‑ не верю» (карты раздаются полностью, 36 карт).

Ответ:

.

В течении 30 дней сентября было 12 дождливых дней, 8 ветреных, 4 холодных, 5 дождливых и ветреных, 3 дождливых и холодных, а один день был и дождливым, и ветреным, и холодным. В течение скольких дней в сентябре стояла хорошая погода.

Ответ: 15

На ферме есть 20 овец и 24 свиньи. Сколькими способами можно выбрать одну овцу и одну свинью? Если такой выбор уже сделан, сколькими способами можно сделать его еще раз?

Ответ: 480, 437

Сколькими способами можно выбрать гласную и согласную буквы из слова «здание»?

Ответ: 9

Сколько существует четных пятизначных чисел, начинающихся нечетной цифрой?

Ответ: 25000

В книжный магазин поступили романы Ф. Купера «Прерия», «Зверобой», «Шпион», «Пионеры», «Следопыт» по одинаковой цене. Сколькими способами библиотека может закупить 17 книг на выбранный чек?

Ответ:: 2985
Список используемой литературы

Савина Л.Н., Попырев А.В. «КОМБИНАТОРИКА» издательство Елабужский государственный педагогический институт 1999г

Халамайзер А. Я. «Математика? – Забавно!» издание автора 1989г

Интернет

http:\www.mathclub.zala.ru/0921.html