Отношение Е заданные единичной матрицей называется отношением равенства.
Отношением назовется обратным к отношением R, если ajRaiтогда и только тогда, когда ajRaiобозначают R-1.
Свойства отношений
Если aRa ==> очн. рефлексивное и матрица содержит на главной диагонали единицу
если ни для какого а не … ==> отношение антирефлексивное
главная диагональ содержит нули
Пр. отношнний
£рефлексивное
< антирефлексивное
2. Если из aRb следует bRa, ==> отношение R симметричное. В матрице отношения элементы
сумм Cij=Cji. Если из aRb и bRa следует a=b ==> отношение R – антисимметричное.
Пр. Если а £b и b£a ==> a=b
- Если дано "a,b,c из aRb и aRc следует aRC ==> отношение называемое транзитивным.
- Отношение называется отношением эквивалентности, если оно рефлексивно, симметрично и транзитивно.
Пр. отношение равенства E
5. Отношение называется отношением нестрогого порядка, если оно рефлексивно,
антисимметрично и транзитивно. Отношение называется отношением строгого порядка,
если оно антирефлексивно, антисимметрично и транзитивно.
Пр. а) отношение £u³ для чисел отношение нестрогого
б) отношение < u > для чисел отношение строгого
Лекция: Элементы общей алгебры
Р. Операции на множествах
Множество М вместе с заданной на нем совокупностью операций W = {j1,…, jm}, т.е. система А = {М1;j1,…, jm} называется алгеброй. W - сигнатура.
Если M1ÌM и если значения j( M1), т.е. замкнуто ==> A1={М1;j1,…, jm} подалгебра A.
Пр. 1. Алгебра (R;+;*) – называется полем действительных чисел обе операции бинарные и
поэтому тип этой алгебры (2;2)
B=(Б;È;Ç) – булева алгебра. тип операций (2;2;1)
Р. Свойства бинарных алгебраических операций
запись ajb.
1. (ajb)jc=aj(bjc) – ассоциативная операция
Пр. +,x – сложение и умножения чисел ассоциативно
2. ajb = bja – коммутативная операция
Пр. +,x – коммутат.
–; : – некоммут.
умножение мат A×B¹B×A – некоммутативно.
3. aj(bjc) = (ajb) j(ajc) –дистрибутивность слева
(ajb)jc) = (ajс) j(bjc) –дистрибутивность справа.
Пр. (ab)e=aebe – возведение в степень дистрибутивного отношения произведения справа
но не abc¹ abac
Р. Гомоморфизм и изоморфизм
Алгебры с разными членами имеют различные строения. Алгебры с одинаковыми членами имеют сходство. Пусть даны две алгебры A=(K; jI) и B=(M; jI) – одинакового типа.
Пусть отображение Г:K-M при условии Г(jI)=jI(Г), (1) т.е. результат не зависит от последовательности возможных операций: Или сначала вып. операции jIb А и затем отображении Г, или сначала отображение Г, или сначала отображение Г и затем отображение jIв В.
Тогда условие (1) называется Гомоморфизмом алгебры А в алгебру В.
Когда существует взаимооднозначный гомоморфизм его называют изоморфизмом. В этом случае существует обратное отображение Г-1.
Мощности изоморфных алгебр равны.
Пр. Алгебры (QN; +) и (Q2; +) – отображение типа и условие (1) запишется как 2(а+b)=2а+2b.
Отношение изоморфизма является отношением эквивалентности на множестве алгебр, т.е вычисление рефлексивное, симметричности и транзитивности. Изоморфизм важнейшее понятие в математике. Полученные соотношения в алгебре А автоматически …. на изоморфные алгебры.