…………………………
нульместные предикатные знаки g
g g g …одноместные предикатные знаки g
g g g ……………………………
переменные c0c1c2c3 …
Порядок в котором здесь перечислены знаки, называется алфавитным порядком.
Выражением, знакосочетанием, символосочетанием в этом формальном языке называется несколько записанных друг за другом в направлении слева на право знаков.
c, c0, c1, … обозначают нульместные функциональные знаки.
f, f0, f1, … обозначают функциональные знаки.
g, g0, g1, … обозначают предикатные знаки.
u, v, w, u0, v0, w0, u1, v1, w1, … обозначают выражения.
х, y, z, х0, y0, z0, х1, y1, z1, … обозначают переменные.
uv обозначает результат написания выражения v после выражения u.
Термами называются знакосочетания с такими порождающими правилами:
D х
Dc
Du1,…,un, f (u1, … ,un). fn-местный, n¹0.
Обозначения для термов: a, b, a0, b0, a1, b1, …
Пример индуктивной последовательности термов:
f
c1
f
(c1, f )f
(c1, c1, f (c1, f ))c2
f
(c1, f ,f (c1, f ), c2)f
(c2)f
(f (c2))Высказываниями, соотношениями, формулами называются знакосочетания с такими правилами порождения:
D g здесь g нульместный
D g(а1,…,аn) здесь gn-местный, n¹0
D u, "x(u)
D u, $x(u)
D u, Ø(u)
D u, v, (u)Ù(v)
D u, v, (u)Ú(v)
D u, v, (u)Þ(v)
D u, v, (u)Û(v)
Пример индуктивной последовательности формул (на основе термов из предыдущего примера)
g
(f , c1)g
"c5(g
)$c1(g
(f , c1))Ø("c5(g
))g
(g
)Ú("c5(g ))g
(f (c1, f ), c2, c2)Обозначениями для высказываний: p, q, r, s, t, p0, q0, r0, s0, t0,…
С целью удобства обозрения формул некоторые скобочные диады можно опускать, принимая соглашение о правосторонней группировке скобок для нескольких одинаковых логических знаков и соглашение об убывании силы связи в алфавитном порядке логических знаков. Пример: pÞqÞr означает (p)Þ((q)Þ(r)), а запись Ø$xpÚqÙr понимается как (Ø($x(p)))Ú((q)Ù(r)). Следует помнить, что любое высказывание с пропущенными парами скобок не является высказыванием формального языка, оно является лишь обозначением соответствующего высказывания.
Нульместные функциональные знаки называются константами. Знакосочетание "x называется квантором всеобщности по х, а $х - квантором существования по х. Начинающееся с предикатного знака высказывание называется предикатом. Высказывание называется элементарным, если оно начинается с квантора или предикатного знака. Высказывание q называется подвысказыванием или компонентой высказывания р, если q есть часть р. Элементарная компонента q высказывания р называется его пропозициональной компонентой, если q имеет хотя бы одно такое вхождение в р, которое не является вхождением в какую-нибудь другую элементарную компоненту высказывания р. Например, высказывание $c5(g
Ùg )Þg имеет пять компонент: $c5(g Ùg ), g , g , g Ùg , $c5(g Ùg )Þg , из которых только первые три являются элементарными, первые две - пропозициональными, только g и g - предикатными.Интерпретация формального языка. Переменная выражает, нотирует, обозначает произвольный объект из некоторого не пустого множества, которое называется денотарием или универсумом данной интерпретации и элементы которого тем самым являются денотатами или значениями переменной. n-местный функциональный знак обозначает n-местную операцию на универсуме. n-местный предикатный знак обозначает изначальную взаимосвязь между любыми n объектами универсума. Термы обозначают объекты универсума, а высказывания обозначают истину или ложь, т. е. денотатами термов являются объекты универсума, а денотатами высказываний являются истина и ложь. Задать интерпретацию формального языка значит задать ее универсум и связанные с ним значения всех нужных нам функциональных и предикатных знаков; тогда значения всех нужных термов и формул при любых значениях фигурирующих в них переменных определяются индукцией по их построению с учетом такой интерпретации логических знаков:
"xp - обобщение высказывания р по х является истинным тттк р является истинным для всех значений переменной х; синонимы: р для каждого х, р для любого х, р для всех x, р для произвольного х.
$xp - подтверждение высказывания р по х является истинным тттк р является истинным хотя бы для одного значения переменной х; синонимы: существует х т.ч. р, р для некоторого х.
Øp - отрицание высказывания р является истинным тттк р является ложным; синонимы: не р, неверно что р.
pÙq - конъюнкция высказываний р, q является истинной тттк оба ее конъюнкта р, q являются истинными; синонимы: р и q, и р и q.
pÚq - дизъюнкция высказываний p, q является ложной тттк оба ее дизъюнкта р, q являются ложными; синонимы: р или q, или р или q.
pÞq - импликация высказываний p, q является ложной тттк посылка р является истинной, а заключение q является ложным; синонимы: р только если q, если р то q, q если р, р тогда q, q когда р, для того чтобы р необходимо чтобы q, для того чтобы q достаточно чтобы р, р следовательно q, из того что р следует что q.
pÛq - эквиваленция высказываний р, q является истинной тттк ее части р, q обе являются истинными или обе являются ложными; синонимы: р если и только если q, р тогда и только тогда когда q, для того чтобы р необходимо и достаточно чтобы q, р эквивалентно q.
Замечание. Иногда высказывания записывают на смеси формального, обычного и математического языка. Все такие записи будем рассматривать как обозначения соответствующих высказываний формального языка.
Замечание. Введение обозначений для высказываний порождает двусмысленность в использовании знака равенства, поскольку сами высказывания являются некоторыми обозначениями, а именно обозначениями истины или лжи. При наличии иерархии обозначений такую двусмысленность обычно снимают соглашением о том, что равенство понимается как равенство между исходными объектами. Т. о. равенство p=q означает, что р и q имеют одинаковые истинностные значения т. е. являются равносильными.