Правилами тождества, равенства, неотличимости называются следующие три правила соответственно:
Dg
(x, x)Dg
(x1, y1)Ù…Ù g (xn, yn)Þg (f(x1, …,xn), f(y1, …,yn))Dg2 (x1, y1)Ù…Ù g
(xn, yn)Þ(g f(x1, …,xn)Þ(y1, …,yn))Теорема об эгалитарной замене: пусть q есть результат замены в p некоторых вхождений терма a термом b; тогда если выражение g20(a, b) является истинным, то p равносильно q.
Теорема о транзитивности логического следствия: если p1, …, pn│=q1, …, qm и q1, …, qm│= r1, …, re, то p1, …, pn│= r1, …, re.
Теорема о расширении списка гипотез: если p1, …, pn│= q, то p0, …, pn│= q.
Теорема дедукции: если высказывания p1, …, pn являются замкнутыми, то p1, …, pn│= p тогда и только тогда когда ê= p1Ù…Ù pnÞp.
Теорема о конъюнктивизации гипотез: p1, …, pn│= p тттк p1Ù…Ùpn│= p.
Теорема о выводе в эгалитарной логике: правила тавтологии, отделения, обобщения, подтверждения, общевнесения, сущевнесения, тождества, равенства, неотличимости образуют достаточный набор правил вывода в эгалитарной логике, т.е. p1, …, pn│= p тттк p может быть получено из p1, …, pn с помощью этого набора правил.
Теорема о сравнительной силе выводов. Если p является тавтологическим следствием из p1, …, pn, то p является кванторологическим следствием из p1, …, pn. Если p является кванторологическим следствием из р1,…,рn, то p является логическим следствием из р1,…,рn.
Алгоритм – это…
Теорема о неразрешимости проблемы логического следствия (логической истинности): нельзя придумать алгоритм, который для любых высказываний p0, …, pn позволял бы разрешить вопрос о том, является или нет p0 логическим следствием из p1, …, pn. Полезно обратить внимание на то, что проблема тавтологического следствия является разрешимой с помощью истинностных таблиц.
Замечание последние семь теорем не исключают случай n = 0.
Замечание если не оговорено противное, слово логика понимается как эгалитарная логика.
предназначены для четкого изложения и развития тех или иных отраслей человеческих знаний. Задать формальную теорию – значит задать ее функциональные и предикатные символы, а также аксиомы, т. е. некоторые из высказываний, которые являются истинными в данной отрасли знаний. Развивать формальную теорию – значит пополнять запас ее теорем, т. е. таких высказываний, которые являются логическими следствиями аксиом.
Изложение любой формальной теории в принципе можно оформить в виде книжек с доказательными текстами:
1 | a1-×-×-×-×-×-×-×-×-×- | ü индуктивнаяý последовательность þ термов |
… | ×××××××××××××××××××××××××××××××××××××××××××××××××××××× | |
k | ak-×-×-×-×-×-×-×-×-×- | |
k+1 | r1-×-×-×-×-×-×-×-×-×- | ü индуктивнаяý последовательность формулþ на основе a1,…, ak |
… | ×××××××××××××××××××××××××××××××××××××××××××××××××××××× | |
k+е | re -×-×-×-×-×-×-×-×-×- | |
k+е+1 | s1 -×-×-×-×-×-×-×-×-×- | ü аксиомыýs1,…, sm есть þ среди r1,…, re |
… | ×××××××××××××××××××××××××××××××××××××××××××××××××××××× | |
k+е+m | sm-×-×-×-×-×-×-×-×-×- | |
k+е+m+1 | t1 -×-×-×-×-×-×-×-×-×- | ü индуктивнаяý последовательность теоремþt1,…, tn есть среди r1,…, re |
… | ×××××××××××××××××××××××××××××××××××××××××××××××××××××× | |
k+е+m+n | tn-×-×-×-×-×-×-×-×-×- |
Здесь штрих-пунктирная линия обозначает пояснение о том, с помощью какого правила порождения получено соответствующее знакосочетание. Для удобства таких пояснений знакосочетания a1,…, tn нумеруются последовательно от 1 до k+е+m+n. Вспомним, что правила порождения теорем являются правилами вывода, что конечная индуктивная последовательность теорем является доказательством и что следующие девять правил, называемых основными, образуют достаточный набор правил вывода из аксиом: правила тавтологии, отделения, обобщения, подтверждения, общевнесения, сущевнесения, тождества, равенства, неотличимости.
Такая форма изложения делает доказательство легко проверяемым, но практически не применяется из-за ее громоздкости.
Способы более компактного изложения формальной теории.
1. Последовательность a1,…, re не записывается, потому что при достаточном навыке термы и формулы распознаются без построения их индуктивных последовательностей.
2. В последовательность t1,…, tn включаются теоремы из других доказательных текстов.
3. Для двухместного функционального или предикатного знака v используется операционная форма записи: вместо v(a,b) пишут (a)v(b).
4. При операционной форме записи принимается соглашение об упразднении некоторых пар скобок в соответствии с соглашением об убывании силы связи в последовательности: одноместный функциональный знак, двухместный функциональный знак, одноместный предикатный знак, двухместный предикатный знак, логический знак.
5. Используются специальные начертания для функциональных и предикатных знаков. Например в теории чисел: 0, 1, 2, 3 - нульместные функциональные знаки; Ö, sin, cos - одноместные функциональные знаки; +, -, ´, /, - двухместные функциональные знаки; <,>,£,³ - двухместные предикатные знаки.
6. Используются знаковые фигуры. Например, åх=3х обозначает сумму 3+4+5.
7. Вводится определяющая аксиома g(х1,...,х11)Û р для нового n-местного предикатного символа g. Здесь переменные х1,...,хnпопарно различны, а высказывание р не имеет свободных вхождений переменных, отличных от х1,...,хn.
8. Вводится определяющая аксиома р{х, ¦( х1,...,хn)} для нового n - местного функционального символа ¦ в тех случаях, когда формула $рх является теоремой. Здесь переменные х, х1,...,хnпопарно различны, а р не имеет свободное вхождение переменных, отличных от х, х1,...,хn.
Теорема об определениях: если теория Т2 получена из теории Т1 путем добавления определяющей аксиомы для нового функционального или предикатного символа v то для каждой теоремы теории Т2 существует равносильная ей теорема теорииТ1.
9. Кроме девяти основных применяются дополнительные правила вывода, например правило отделения конъюнкта DpÙg, р и правило присоединения дизъюнкта Dр, pÚg.
10. Применяются известные методы доказательства. Обоснование таких методов дается в учебниках логики. Например метод доказательства от противного основан на следующей теореме.
Теорема о доказательстве методом от противного: если формальная теория Т2 получена путем добавления аксиомы Øр к аксиомам теории Т1 и если формулы q, Øq являются теоремами теории Т2, то формула р является теоремой теории Т1.
Формальная арифметика формализует систему знаний о целых неотрицательных числах, использует в качестве исходных четыре функциональных и два предикатных знака
¦ | ¦ | ¦ | ¦ | g | g |
0 | 1 | + | × | = | < |
интерпретируемых в соответствии с их известными со школы специальными начертаниями, имеет такие аксиомы