Смекни!
smekni.com

Краткая методичка по логике (стр. 7 из 10)

Ø1=0

х + 1= y + Þx = y

x + 0 = x

x + (y + 1) = (x + y) + 1

x×0 = 0

x×(y + 1) = x×y + x

Øx < 0

x < y + 1 Û x < y Ú x = y

p íx, 0ýÚ"(pÞíx, x + 1ý)Þ p

Здесь при записи аксиом использованы ранее перечисленные соглашения о компактизации изложения и известное соглашение о том, что знак умножения связывает сильнее знака сложения. Если такие соглашения не принимать, то к примеру первую аксиому следовало бы записать в виде Ø(g

)).

Пример определяющих аксиом для новых нульместных функциональных знаков 2, 3, 4, 5 и новых двухместных предикатных знаков >, £,³,¹ :

2 = 1 + 1 c1>c2 Ûc2<c1
3 = 2 + 1 c1£c2Ûc1<c2 Úc1 = c2
4 = 3 + 1 c1³c2Ûc1>c2 Úc1 = c2
5 = 4 + 1 c1¹c2ÛØc1 = c2

Заметим, что знак < можно было бы не включать в перечень исходных знаков формальной арифметики, а ввести его с помощью определяющей аксиомы c1<c2 Û$c3(Øc3 = 0 Ùc1+ c3 = c2).

Пример доказательного текста в формальной арифметике (k = 3, е = 6, m = 1, n = 3):

1 ¦
----------------------------------------------
Константа
2 ¦
-----------------------------------
Константа
3 c1-------------------------------------------------- Переменная
4 g
)---------------------------------------
Предикат от 2,1
5 Ø(g
))-----------------------------------
Отрицание 4
6 g
(c1
)----------------------------------------
Предикат от 3,1
7 Ø(g
(c1
))-----------------------------------
Отрицание 6
8 $c1(g
(c1
)))--------------------------------
Подтверждение 7 по c1
9 (Ø(g
)))Þ$c1(Ø(g
(c1
))))----
Импликация 5,8
10 Ø(g
))-----------------------------------
5: аксиома
11 (Ø( g
)))Þ$c1(Ø(g
(c1
))))----
9: пр. подт. 7, c1, 2
12 Ø(g
))-----------------------------------
5: аксиома 10
13 $c1(Ø( g
(c1
)))----------------------------
8: пр. отделения для 12, 11

Компактизированный текст:

11 Ø1 = 0 Þ$c1Øc1 = 0------------------------- Правило подтверждения
12 Ø1 = 0-------------------------------------------- Аксиома
13 $c1Øc1 = 0-------------------------------------- Правило отд. для 12, 11

Словесный вариант: «Если единица не равна нулю, то тем самым существует не равное нулю число. Но единица не равна нулю. Следовательно, существует число, не равное нулю».

Тема 7. Множества и функции.

В этой теме A, B, C, D, E, F, G, X, Y, Z, X1, Z1,…, Xn, Yn, Zn обозначают попарно различные переменные. Множество – это совокупность различных объектов, мыслимая как единый новый объект. Различные объекты, из которых составлено множество, называются его элементами. Соотношение xÎA означает, что объект х есть элемент множества A. Отрицание соотношения xÎA записывается в виде xÏA. Соотношение АÌВ означает, что А есть подмножество множества В, т.е. что каждый элемент множества А является элементом множества В. Отрицание соотношения АÌВ записывается в виде АËВ. Множество, элементами которого являются все те и только те объекты вида а, для которых истинно соотношение p, обозначается через {a|p}. Множество {x|"A(xÏA)} называется пустым множеством и обозначается символом Ø. Множество {x|x = x1Ú…Úx = xn} обозначается через {x1,…,xn}. Множество {x|xÎAÚxÎB} называется объединением множеств А, В и обозначается через АÈВ. Множество {x|xÎAÙxÎB} называется пересечением множеств А, В и обозначается через АÇВ. Множество {x|xÎAÙxÏB} называется дополнением множества В относительно А или результатом удаления из множества А элементов множества В и обозначается через А&bsol;В.

Простейшиетеоремы: 3Ï{9, 7, 3}, {x+5|x2 = 4} = {3, 7], AÏA, AÌA, …

Обозначения для некоторых множеств:

N - множество натуральных чисел

Z - множество целых чисел

R - множество действительных чисел

Упорядоченная n-ка объектов x1,…,xn обозначается через (x1,…,xn) и определяется так: (x1) = x1

(x1, x2) = {{x1}, { x1, x2}}

(x1, x2, x3) = ((x1, x2), x3)

(x1, x2, x3,x4) = ((x1, x2, x3), x4)

………………………………..

Упорядоченная n-ка называется еще n-мерным упорядоченным набором, вектором, точкой, кортежем. Объект x1 называется k-той компонентой или координатой n-мерного набора (x1,…,xn) и обозначается через koor

(x1,…,xn). Множество {x1,…,xn| x1Îz1Ù…Ù xnÎzn} называется декартовым произведением множеств z1,…,zn и обозначается через z1´…´zn. Если А - множество упорядоченных n-ок, то множество {xk|(x1,…,xnÎA} называется k-той проекцией n-мерного множества А и обозначается через π
А. Через Аn обозначается множество А´…´А (n множителей). Соглашение: знаки ´, Ç, связывают сильнее чем È, &bsol;.

Простейшие теоремы: (x1,…,xn) = (y1,…,yn)Û x1= y1Ù…Ùxn= yn, (9, 9, 9)¹ (9, 9), p

(A´B´C´D´E) = C, {5. 7}2 = {(5, 5), (5, 7), (7, 5), (7, 7)}, koor
(5, 7, 9) = 9, koor
(5, 7, 9) = koor
(5, 7, 9) = koor
(5, 7, 9) = H, {7}´{8, 5}´{9} = {(7, 8, 9), (7, 5,9)}. {4}5 = {(4, 4, 4, 4, 4)}, p
{(1, 2, 3), (1, 3, 2), (2, 3, 4)} = {2, 3}. A´B´C = (A´B)´C.

Функцией называется множество, любой элемент которого есть упорядоченная двойка. Множество π

F называется областью определения или доменом функции F и обозначается dom F. Множество π
F называется областью значений или ранжиром функции F и обозначается ran F. Если (x,y)ÎF, то y называется значением функции F в x и обозначается F(x). Если АÌdomF, то множество {y|$ÎAÙ(x, y)ÎF)} называется образом множества А относительно функции F и обозначается F[А]. Функция F в случае dom F = A и ran FÌB / ranF=B называется еще отображением множества А в/на множество В. Запись F:А®В означает что F есть отображение множества А в множество В. Функция F называется сужением функции G (на множество dom F), а функция G называется расширением функции F (на множество dom G), если F есть результат удаления из G всех тех (x, y), для которых xÏ dom F. Если F есть функция, то {(y, x)ï (x, y)ÎF} тоже есть функция, называемая обратной по отношению к F. Очевидно, что если функция G является обратной по отношению к функции F, то F является обратной по отношению к G. Если dom F есть множество упорядоченных n-ок, то функция F называется n-аргументной и вместо F((x1,…,xn)) используют более короткое обозначение F(x1,…,xn). Функция F называется однозначной, если из (x, y)ÎF и (x, z)ÎF следует y=z. Функция называется взаимно однозначной или биективной, если она сама и обратная к ней функция являются однозначными. Последовательностью называется однозначная функция F т.ч. dom F = N. Если F есть последовательность и nÎN, то F(n) называется n-м членом последовательности и обычно обозначается через Fn.