Множество А называется бесконечным, если существует биективное отображение множества N в множество А. Множество называется конечным, если оно не является бесконечным.
Простейшие теоремы: cos(0)=1, cos[{0}] = {1}, Аrccos и cos обратны друг к другу, функция arccos не является обратной к cos и является обратной к сужению функции cos на множество ran arccos.
ЗАДАЧНИК-МИНИМУМ ПО ЛОГИКЕ
В квадратных скобках дается ответ к задаче, Д означает ДА, Н означает НЕТ, все высказывания о числах в задачах 1.1 – 6.4 являются арифметическими, т.е. высказываниями о целых неотрицательных числах.
1.1 Указать истинное значение для высказываний 5=5, 5¹5, 5>5, 5£5, 5³5, 5<5, Х<0, Х+2<5, Х+Х<6, Х-Х=0, Х³0, X+Z=Z+X [ИЛЛИИЛЛППИИИ] и для каждых двух соседних высказываний выяснить, являются ли они равносильными [НДНДНДНДНДД].
1.2 Для каждой из трех последовательностей 2, 3; 3, 2, 4, 5; 3, 2, 3, 6 выяснить, является ли она индуктивной относительно набора правил D3; DХ, Х-1; DХ,Z,X+[НДД].
1.3 Выяснить, являются ли Dа<b, a<b+3; Da³b, b³0, a³0 правилами вывода [ДД].
2.1 Для каждого из пяти знакосочетаний ØÚ; ¦
g $; f f f ; c4c8f g ; "$ØÙÚÞÛ выяснить следуют ли в нем его знаки в алфавитном порядке [ДНДНД].2.2 Для терма f
(f (c1), f , f (f , c1, f (f ))) составить индуктивную последовательность термов[f , c1, f (f ), f (f , c1, f (f ) f (f (c1), f , f (f , c1, f (f )))].2.3 Пусть p, q, r обозначают нульместные предикаты. Для высказывания pÚØqÙrÞpÞqÞr составить индуктивную последовательность высказываний [p, q, r, Ø(q), (Ø(q)Ù(r), (p)Ú((Ø(q))Ù(r)), (q)Þ(r), (p)Þ((q)Þ(r)), ((p)Ú((Ø(q))Ù(r)))Þ((p)Þ((q)Þ(r)))].
2.4 Для высказывания $c5g
(c1, f (c2), c1)составить индуктивную последовательность термов и высказываний [c1, c2, f (c2), g (c1, f (c2), c1), $c5 (g (c1, f (c2), c1))].2.5 Для каждого из семи обозначений а: f
(a), g (a), g (a, b); Z; $Xg (X, X, Z); "Xf (X, X)выяснить, обозначает ли оно: Терм, Высказывание, Ни-то-ни-другое [TTBHTBH].2.6 Для каждой из шести скобочных диад в высказывании ((p)Þ(q))Þ((r)Þ(s)) выяснить можно ли ее отбросить без нарушения смысла данного высказывания [HДДДДД].
2.7 В высказывании pÛqÚØrÙØp восстановить все скобки [(p)Û((q)Ú((Ø(r))Ù(Ø(p))))].
2.8 В высказываниях pÚØqÙrÞpÙrÚØp, pÚØqÙ(rÞpÙr)ÚØp восстановить все скобки с помощью нумерации логических знаков и скобок в порядке их восстановления.
é((p)Ú((ù(q))Ù(r)))Þ(((p)Ù(r))Ú(ù(p))), (p)Ú(((ù(q))Ù((r)Þ((p)Ù(r)))Ú(ù(p)))ù
ë76p666422q2444r4677753p333r355511p1577p77776544q45552r2221p111r12566633p367û
2.9 Пусть p обозначаетвысказывание ("c1$c2g
(c2, f (c1, c2)))Ùg (f , f (c2))Þg Úg (c1). Индукцией по построению высказывания определить его истинностное значение на универсуме при такой интерпретации функциональных и предикатных знаков.f | g | X | f (X) | g (X) | X | Y | f (X, Y) | g (X, Y) |
3 | И | 3 | 4 | Л | 3 | 3 | 3 | И |
4 | 3 | И | 3 | 4 | 4 | И | ||
4 | 3 | 4 | И | |||||
4 | 4 | 4 | Л |
Ответ:
c2 | p |
3 | Л |
4 | И |
2.10 Указать истинностные значения высказываний 2<2ÞХ>3, Х<3+4ÛХ<9, 7<Х<9ÞХ=8, Х£3ÚХ>3, "Х(Х>3)Þ5=3, $c1"c2(c2<c1), "c2$c1 (c2<c1) [ИПИИИЛИ].
2.11 Для каждого из правил Dp, q, r, pÙqÙr; Dp, pÞp; DpÞp, p ; DpÚq, Øp, q; DØØØØp, p; Dp, $XP; D$XP, P; DP, "XP; D"XP; P выяснить является ли оно правилом вывода [ДДНДДДНДД].
2.12 Для каждого из высказываний g
(a), "X g (X,C), $X(g Þ g ), $Xg Þ g , g , Ø g , g Û g , g выяснить, является ли оно: предикатом [ДНННДННД], элементарным высказыванием [ДДДНДННД].