4 А=0, С=0 L: By=0Ûy=0ÛL=OX
5 B=0, C=0 L: Ax=0Ûx=0ÛL=OY
6 A¹ 0, В ¹ 0, С ¹ 0 L; - не проходит через начало координат и пересекает обе оси.
26. Уравнение прямой с угловым коэффициентом
Если общее уравнение прямой, при В ¹ 0 переписать в виде:
и приравняв: и получим ур-е с угловым коэффициентому=кх+b (10), где число к = tga, a - величина угла наклона прямой к оси ОХ, угол, отсчитываемый в направлении противоположном движению часовой стрелки от положительного направления оси ОХ до данной прямой.
В случае L||ОХ, или L=OX, a=0
В случае L||ОY, или L=OY, a=П/2 и угловой коэффициент не существует.
27. Ур-е прямой, проход через данную т., с данным угловым коэфф. Ур-е прямой проход через две данные точки.
Если прямая задана т М0(х0, у0) и угловым коэффициентом к, тогда на основании ур-я (10) можно получить ур-е искомой прямой:
у-у0=к(х-х0) (11)
Ур-е прямой проходящей через две заданных точки
Зададим прямую точками М1(х1,у1) и М2(х2,у2), х1 ¹ х2. М1 и М2 принадлежат прямой, откуда следует:
у-у1=к(х-х1) для М1и у-у2=к(х-х2) для М2
откуда:
(12) Эта ф-ла позволяет вычисли ть угловой коэффициент, зная коорд двух точек.
Если у1 ¹ у2, то подставляя к из ф-лы (12) в равенство: у-у1=к(х-х1), получаем:
(13) Искомое уравнении прямой, проход через две заданных точки.28. Расстояние от точки до прямой на плоскости
Расстоянием от т. М* до прямой L наз. длину отрезка М*N – перпендикуляра L^ опущенного из т. М* на эту прямую.
Если М*(х*, у*) – заданная точка,
а
- нормальное ур-к прямой L, то расстояние от М* до L выч. по ф-ле:d=d(M*,L)=|x*cosj+y*sinj-p| (14)
d=d(M*,L)=|rx×n0 -p|
обозначим через d(M*,L)= rx×n0 –p= x*cosj+y*sinj-p т. е.: d(M*,L)= |d|
по знаку d можно судить о расположении точек О и М*, относительно прямой L:
Если О и М* расположены по разные стороны относительно прямой, то d > 0 , если по одну сторону – то d<0. Величина d называется отклонением т. М* от прямой L.
Если прямая задана общим уравнением, то расстояние вычисляется по ф-ле:
29. Уравнение прямой в отрезках
Рассматривая общее ур-е прямой, при А,В,С ¹ 0, переписав его в виде:
и положива = - С/A в = - С/В получим ур-е прямой в отрезках:
(16)Для нахождения т. М1 пересечения прямой (16) с осью ОХ достаточно решить систему уравнений:
для пересечения с осью ОУ получаем:
Параметры а и в в(16) определяют величину отрезков Ом1 и ОМ2, отсекаемых прямой от осей координат.
30. каноническое уравнение прямой
Ненулевой в-р коллинеарный прямой называется ее направляющим в-ром.
Из аксиом следует, что через заданную точку проходит только одна прямая с заданным направляющим в-ром.
Прямая L, с направл. в-ром S проходящая через т. М0(х0, у0). проходит через т. М(х,у) тогда и только тогда, когда в-ры М0М и S 0 коллинеарны т. е. М0М=tS, t'R) (17) Это ур-е наз векторным уравнением прямой.
Если М0(х0, у0), М(х,у) – текущие точки прямой L; S={m,n} – направляющий вектор прямой , тогда в-р М0М = {x-x0, y-y0}
Записав условия коллинеарности из (17) в векторной форме получим: x-x0=tm, y-y0=tn или:
(18) Ур-е наз. каноническим ур-ем прямой на плоскости. Обозначает лишь пропорциональность и в случае, когда m = 0 или n = 0 равносильно ур-ям: х-х0=0 или у-у0=0 соответственно.31.
Параметрическое уравнение прямой на плоскости.Представляет собой другую форму записи ур-я (17)
пусть r=ОМ, а r0=OM0 – радиус в-ры точек М и М0 относительно начала координат, тогда М0М = r-r0 и ур-е (17) зап. в виде: r=r0+tS, t'R
или в координатной форме, в системе ОХУ:
(20), t'Rур-я (19) и (20) наз параметрическими уравнениями прямой на плоскости в векторной и координатной формах.
32. Угол между двумя прямыми на плоскости.
Условия параллельности и перпендикулярности двух прямых на плоскости
а) прямые L1 L2 заданы общими уравнениями
L1:=А1х+В1у+С1=0, А12+В12>0
L2:=А2х+В2у+С2=0, А22+В22>0
j(угол между ними)= углу между их нормальными в-рами n1 ={A1,B1} и n2={A2,B2}
оттуда вытекает, что
L1|| L2 Û n1 || n2Û n1 = ln2
A1=lA2, B1=lB2
L1 ^ L2 Û n1 ^ n2Û n1×n2 =0 Û
Û A1×A2+B1×B2=0
б) прямые заданы каноническим уравнением
угол между ними равен углу между их направляющими векторами:
S1={m1,n1} S2{m2,n2} поэтому:
L1|| L2 Û S1 || S2L1 ^ L2 Û S1 ^ S2 Û S1×S2=0 Û
m1×m2+n1×n2=0
в) прямые заданы ур-ем с угловым коэффициентом
L1:= у=к1х+в1
L2:= у=к2х+в2
за угол между прямыми принимаемся наименьший угол на который нужно повернуть прямую L1 против часовой стрелки до совмещения с прямой L2 вокруг т. пересечения прямых.
Через a1 и a2 обоз углы наклона прямых L1 и L2 к оси ОХ
Угол между прямыми j= a2- a1
tga1=k1, tga2=k2
L1|| L2 Ûa1 = a2 (j=0) Û k1=k2
L1 ^L2 Ûj=П/2
k2= -1/k1
33. Нормальное уравнение плоскости. Общее уравнение плоскости.
Зафиксировав неку т. О в пространстве положение плоскости П будет определено, если задать следующие величины: расстояние до нее от начальной т. О, т. е. длину р отрезка ОТ, перпендикуляра, опущенного из т. О на плоскость П и единичный в-р n0, |n0|=1, перпендикулярный плоскости П и направленный из начальной т. О к этой плоскости.
Когда текущая т. М движется по плоскости ее радиус в-р r меняется так, что
prn0 OM=p (1)
это соотношение вып для каждой т. принадлежащей плоскости, а для не принадлежащей – нарушается.
(1) являет уравнением этой Плоскости П
prn0 OM=r×n0 или r×n0-p=0 (2)
ур-е (2) – нормальное уравнение плоскости в векторной форме. Радиус-вектор r произвольной т. плоскости наз. ее текущим радиус вектором.
Введем в пространстве прямоугольную Декартову систему координат, поместив ее начало в т. О, тогда в-ры r и n0 можно записать так: n0={cosa, cosb, cosd);
r={x,y,z}
Ур-е (2) примет вид:
x×cosa +y×cosb+z×cosd-p=0 (3) – нормальное уравнение плоскости в координатной форме
Особенности ур-я (3)
1 Сумма квадратов коэффициентов при текущих координатах = 1:
cos2a+cos2b+cos2d=1
2 свободный член (-р) £0
Относительно переменных x,y,z – ур-е (3) явл. ур-ем 1 степени.
Всякое ур-е 1 степени определяет плоскость
Ур-е:
Ax+By+Cz+D=0 (4) – уравнение плоскости общего вида.
Всякий ненулевой, перпендикулярный плоскости вектор наз. нормальным вектором этой плоскости. В-р n={A,B,C} нормальный в-р плоскости, заданной ур-ем (4), таким образом коэффициенты при координатах в ур-е (4) являются координатами нормального в-ра этой плоскости. Все другие нормальные вектора получают из в-ра n умножая его на любое ¹ 0 число.
34. Ур-е плоскости проходящей через заданную точку перпендикулярно заданному направлению
Уравнение плоскости, проходящей через т. М0, заданной r0={x0,y0,x0}, перпендикулярной в-ру n={A,B,C}строится так:
Проведем радиус в-р r={x,y,z} в произвольную т. М этой плоскости. В-р М0М=r-r0 лежит в плоскости П и значит перпендикулярен в-ру n., поэтому их скалярное пр-е = 0
(r-r0)×n=0 (1) Рав-во (1) справедливо для всех т. М плоскости П и нарушается если М не принадлежит этой плоскости, тем самым – (1) – векторное уравнение искомой плоскости, в координатной форме это выражается так:
A(x-x0)+B(y-y0)+C(z-z0)+D=0
35. Исследование ур-я плоскости. неполное ур-е плоскости
По виду общего ур-я можно судить о том как лежит плоскость относительно системы координат OXYZ. Если хотя бы один из коэффициентов общего ур-я = 0, то оно наз. неполным.
Возможны случаи:
1 D=0 П: Ax+By+Сz=0 т. О(0,0) удовлетворяет этому уравнению значит прямая проходит через начало координат
2 А=0 П: Ву+ Сz +D=0 - нормальный в-р n={0,B,C} перпендикулярен оси ОХ отсюда следует, что плоскость параллельна оси ОХ
3 В = 0 П: Aх + Cz +D=0 - нормальный в-р n={А,0,С} перпендикулярен оси ОY отсюда следует, что плоскость параллельна оси ОУ
4 С=0 П: Ax+By+D=0, n={А,B,0} перпендикулярен OZÛП ||OZ плоскость параллельна оси OZ
5 А=0, C=0 П: By+D=0Ûy= - D/BÛ тогда из 2 П||ОХ, из 4 П||OZ значит П||OXZ
6 А=0, В=0 П: Cz+D=0Ûz= - D/CÛ П||ОХ, П||OY значит П||OXY
7 C=0, В=0 П: Ax+D=0Ûx= - D/AÛ П||ОZ, П||OY значит П||OYZ
8 A=0, В=0, D=0 П: Cz=0 Ûz=0Û П||ОXY, OÎ П значит П= OXY
9 A=0, C=0, D=0 П: By=0 Ûy=0Û П||ОXZ, OÎ П значит П= OXZ
10 B=0, C=0, D=0 П: Ax=0 Ûx=0Û П||ОXY, OÎ П значит П= OXY
11 A¹ 0, В ¹ 0, С ¹ 0 П; - не параллельна ни одной из осей и пересекает их.
36. Уравнение плоскости проходящей через три данный точки
Даны М1(x1,y1,z1), М2(x2,y2,z2), М3(x3,y3,z3) не лежащие на одной прямой. Пусть М(x,y,z) – точка искомой плоскости.
r1={x1,y1,z1}, r2={x2,y2,z2}, r3={x3,y3,z3} и r={x,y,z} – радиус векторы данных точек.
В силу компланарности в-ров М1М=r-r1, M1M2=r2-r1, M1M3=r3-r1 их смешанное произведение = 0, т. е. радиус в-р т. М удовлетворяет условию: