1.Матрицы. Терминология и обозначения.
Матрицей размера (mxn) называется набор m×n чисел – элементов м-цы Ai,j, записанных в виде прямоугольной таблицы:
Набор аi1, ai2, ain – наз iтой строкой м-цы. Набор a1j, a2j, amj – jтым столбцом.
М-ца размером 1хп – называется строкой, вектором; м-ца размером mx1 – столбцом. Если размерность пхп – матрица называется квадратной. Набор элементов а11, а22, апп образует главную диагональ м-цы. Набор а1п, а1,п-1, ап1 – побочную диагональ. М-ца все эл-ты, которой = 0 наз. нулевой. Квадратная м-ца, элементы главной диагонали которой равны 1, а все остальные – 0, называется единичной, обозн.: Е
Матрицы: А(I,j) и B(I,J) называется равными, если равны их размеры и их элеме6нты в одинаковых позициях совпадают.
2.Действия с матрицами
1) Сложение
Суммой м-ц А(I,j) и B(I,J) наз. м-ца С(I,J) элементы кот, выч по формуле:
Сij=Aij+Bij (I=1…m, j = 1…n)
C=A+B (размер всех м-ц: mxn)
2) умножение м-цы на число
Произведение м-цы А = (Aij) размера mxn на число С называется матрица: B=(Bij) размера mxn, элементы кот, выч. по формуле:
Вij=С×Aij (I=1…m, j = 1…n)
В=С×А
вычитание:
С=А+(-)В = А-В
3) умножение м-ц
А=(Aik), B=(Bkj) – квадратные м-цы порядка n. Произведением А на В называют м-цу С= (Сij) элементы, кот выч. по формуле:
Сij = Ai1×B1j+… Ain×BnJ
С=АВ. Можно записать так:
Порядок сомножителей в матрице существенен: АВ не равно ВА
Св-ва умножения м-цы:
(АВ)С=А(ВС)
А(В+С)=АВ+АВ, (А+В)С=АС+ВС
Произведение двух прямоугольных матриц существует, если их внутренние размеры (число столбцов первой, и число строк второй) равны.
3.Порядки суммирования. Транспонирование м-цы
Сумму Н всех элементов квадратной м-цы А можно вычислить 2 мя способами:
1. Находя сумму элементов каждого столбца и складывая полученные суммы:
2. Находя сумму элементов каждой строки и складывая эти суммы:
отсюда вытекает, что
порядок суммирования в двойной сумме можно менять.
Матрица
называется транспонированной по отношению к м-це А=
Обозначается АТ. При транспонировании строки переходят в столбцы, а столбцы в строки и если А размером mxn, то АТ будет размером nxm
Св-ва операции транспонирования.
1 (АТ)Т=А
2 (А+В)Т=АТ+ВТ
3 (СА)Т=САТ (С-число)
4 (АВ)Т=АТ×ВТ
4.Элементарные преобразования матрицы.
1 Переставление двух строк
2 Умножение строки на не равное 0 число В
3 Прибавление к строке матрицы другой ее строки, умноженной на число С.
Также производят элементарные преобразования столбцов.
5.Матрицы элементарных преобразований.
С элементарными преобразованиями тесно связаны квадратные матрицы элементарных преобразований. Они бывают следующих типов:
1 м-цы получающиеся из единичных путем перестановки двух любых строк например м-ца:
получена перестановкой 2 и 4 строки2 тип. м-цы получающиеся из единичной заменой диагонального элемента на произвольное не нулевое число:
отличается от единичной элементом В во второй строке
3 тип отличающиеся лишь одним недиагональным не нулевым элементом:
Основное св-во матриц элементарных преобразований Элементарное преобразование произвольной матрицы равносильно умножению этой м-цы на матрицу элементарных преобразований
Элементарные преобразования строк м-цы А
1 умножение м-цы А на м-цу 1 типа слева переставляет строки с номерами I,j
2 Умножение м-цы А на м-цу второго типа слева равносильно умножению j строки м-цы А на число В
3 прибавление к jстороке м-цы А ее iтой строки, умноженной на число С равносильно умножению м-цы А на м-цу 3 типа слева
Элементарные преобразования столбцов м-цы А
1 умножение м-цы А на м-цу 1 типа справа переставляет столбцы с номерами I,j
2 Умножение м-цы А на м-цу второго типа справа равносильно умножению j столбца м-цы А на число В.
3 прибавление к j столбцу м-цы А ее I того столбца, умноженного на число С равносильно умножению м-цы А на м-цу 3 типа справа.
6.Определители
С каждой квадратной матрицей связано некое число наз. определителем.
Определителем м-цы второго порядка:
наз число: а11×а22-а12×а21
Определитель м-цы третьего порядка:
==
также можно восп правилами треугольника:
Предположив, что определитель м-цы порядка меньше n уже известен, определитель м-цы порядка n будет равен:
D= a11×M11-a21×M21+…+(-1)n+1×an1×Mn1
где Мi1 – определитель м-цы порядка n-1, это число называется дополнительным минором. Подобная м-ца получается из А путем вычеркивания 1 столбца и j строки. Это называется разложением определителя по 1 ому столбцу.
число: Аij=(-1)I+1×Mij называется алгебраическим дополнением эл-та аij в определителе [А] с учетом алгебр. доп ф-лу нахождения определителя можно записать так:
Определитель – сумма попарных произведений эл-тов произвольного столбца на их алгебраический дополнитель.
1 При транспонировании матрицы определитель не изменяется: [AT]=[А]
отсюда вытекает, что строка и столбец равноправны с точки зрения свойств определителя.
2 Линейность
Если в определителе DI является линейной комбинацией 2-х строк:
тогда D=fD’+lD’’
где:
отличаются от D только I-тыми строками.
3 Антисимметричность если определитель В* получен из опр В перестановкой строк, то В* = -В
4 Определитель матрицы с двумя одинаковыми строками равен 0
5 Умножение строки определителя на число равносильно умножению самого определителя на это число
6 определитель с 0 строкой = 0
7 определитель, одна из строк которого = произв другой строки на число не равное 0 = 0. (Число выносится за определитель далее по св-ву 4)
8 Если к строке определителя прибавить другую его строку, умноженную на какое либо число, то полученный определитель будет равен исходному.
9 Сумма произведения эл-тов строки определителя на алгебр. дополнение соответствующих элементов другой строки опр = 0
8. Обратная матрица
Квадратная матрица наз. невырожденной, если ее определитель не равен 0.
М-ца В, полученная из невырожд м-цы А по правилу:
В позицию ij м-цы В помещается число = алгебраическому дополнению м-цы Aji, эл-та аji в м-це А.
М-ца В наз. союзной или присоединенной к м-це А и обладает следующими св-вами:
АВ=ВА=[А]I (I-единичная матрица)
Матрица А-1=1/[А]В называется обратной м-це А. Отсюда вытекает равенство:
АА-1=I, А-1А=I
М-цу А-1 можно рассматривать как решение 2х матричных уравнений АХ=I, ХА=I, где
- неизвестная матрица.Произвольную невырожденную м-цу элементарными преобразованиями строк можно привести к единичной матрице
1 Привести к треугольному виду
2 Диагональ матрицы преобр 2 вида приводится к равенству единицам
3 Преобразованиями 3 го типа, прибавляя к п-1 строке последнюю умноженную на –а1п, -а2п…-ап-1п, приводится к матрице у которой все эл-ты п-ного столбца, кроме последнего равны 0 и т. д.
2 метод построения обратной м-цы путем составления расширенной матрицы (метод Жордана)
1 составляется расширенная матрица, приписывая к матрице А единичную матрицу I того же порядка т. е. получаем м-цу (А|I) элементарными преобр строк м-ца А приводится к треугольному виду, а потом к единичному, полученаая на месте I м-цы м-цы С – является обратной исходной матрице А
15. Понятия связанного и свободного векторов.
Рассмотрим т А и т. В, по соединяющему их отрезку можно перемещать в двух направлениях: если считать А началом, а т. В – концем, то получим направленный отрезок АВ, а если т. В- начало, а т. А – конец, то направленный отрезок ВА. Направленный отрезок часто наз. связанными или закрепленными векторами. В случае, когда начальная и конечная точка совпадают, т. е. А=В, связанный вектор наз. нулевым..
Связанные векторы АВ и СД равны, если середины отрезков АД и ВС совпадают обоз: АВ=СД, отметим, что в случае, когда т. А,В,С,Д не лежат на одной прямой это равносильно тому, что четырехугольник АВСД – параллелограмм. Поэтому равные связанные в-ры имеют равные длины.
Св-ва связанных в-ров:
1 Каждый связанный в-р равен самому себе АВ=АВ
2 Если АВ=СД, то и СД = АВ
3 Если АВ=СД и СД=EF, то AB=EF
От каждой точки можно отложить связанный в-р равный исходному.
Свободные в-ры – те, начальную точку которых можно выбирать произвольно. или, что тоже самое, которые можно произвольно переносить параллельно самим себе. Свободный в-р однозначно определяется заданием связанного в-ра АВ.