1Натуральные числа – 1,2,3,4, …., счёт предметов, указание порядкового номера. Натуральные числа также называют положительными целыми числами. Числа –1,-2, -3, …, противоположные натуральным называются отрицательными целыми числами. Число 0 тоже целое. Рациональные числа – целые и дроби (+,-) Вид М/N, где (N
0)M и N- взаимно простые целые числа. Иррациональные - √2 все вышепереч-е + бесконечные непериодич. дроби. Все эти числа – действительные. Компл. число Z1=A1+iB1; i²=-12 Z1±Z2=(A1±A2)+i(B1±B2)
Z1*Z2=(A1+iB1)*(A2+iB2)
Z1/Z2=(a1+ib1)(a2-ib2)/(a2+ib2)(a2-ib2)=(a1a2+b1b2)+
i(b1a2-a1b2)\a2²+b2²=(a1a2+b1b2/a2²+b2²)+i* (b1a2-
a1b2/a2²+b2²)
3 Тигонометрическая форма комплексного числа
Z=a+ib=r*cosφ+i*r*sinφ=r*(cosφ+i*sinφ)
r – модуль; φ – аргумент. b – y; a – x.
4 Zª=rª(cos Aφ+i*sin Aφ)
5 ª√Z=ª√r(cos φ+2πk/а +i *sin φ+2πk/a) k∈(1;2;3…a-1)
Все корни А-ой степени лежат на окружности r=| Z |¹\а и являются вершинами правильного А-угольника, вписанного в эту окружность.
6 Переменная вел. Х, принимающая последовательно ( с возрастанием номера n ) значения х1,х2,х3..хN называется числовой последовательностью
1,1,1,1,1…1
1,1/2,1/3…1/N
1,-1,1,-1…(-1)ª
Xn,n∈N
Число А наз. пределом последовательности Хn если для любого сколь угодно малого положит. числа E>0 найдётся такой номер N(E), что как только n>N(E) то имеет место неравенство | Xn – A | < E
lim Xn = A
n→∞
Число А есть предел последовательности Xn если для любого ε> 0 найдётся такой номер N, начиная с которого (при n>N) все члены последовательности будут заключены в ε-окрестности какой бы она узкой ни была. Вне этой окрестности может быть лишь конечное число членов этой последовательности.
7 Если последовательность Хn монотонна и ограничена, то она имеет предел (сходится).
Cвойства пределов:
если Хn=С то lim Xn=C
пусть lim Xn=A, a lim Yn=B тогда lim (Xn±Yn)=A±B
n→∞ n→∞ lim (Xn*Yn)=A*B
lim (Xn/Yn)=A/B ; B≠0
если Xn≤Yn для n∈N то lim Xn ≤ lim Yn
n→∞ n→∞
8 Eсли Хn сходится (имеет предел) то Хn ограничена
Последовательность Xn; n∈N наз. ограниченнойесли существует положительное число М, что выполняется нер-во | Xn |≤M; n∈N
Если lim Xn=0, то Xn; n∈N наз. БМВ обознач (αn,βn,γn)
n→∞
Св-ва БМВ:
lim αn=0
n→∞
lim (αn±βn)=0
n→∞
lim (Xn*αn)=0; если Xn-ограничена
n→∞
В произведении БМВ можно заменять на эквивалентную БМ. В алгебраической сумме замену можно производить в том случае если не происходит сокращения БМ одного порядка с Х:
sin X ~ X eª-1 ~ a
tg X ~ X (1+x)ª ~ ax
1 – cos X ~ X²/2 arctg X ~ X
LOGe(1+X) ~ X xª-1 ~ aLNx
9 Сумма эл-тов числовой последовательности наз. числовым рядом.
Сумма n членов ряда – n частичная сумма ряда
Если при n→∞ lim Sn=S, то ряд сходящийся, S сумма ряда .
Ряд наз. сходящимся если сущ. конечный предел последовательности его частичных сумм.
Прим:
при каких q сходится и расходится ?сходится к сумме S=a/1-q при | q |<1 и расход-ся при | q |≥1
10 Признак сравнения двух знакоположит-х рядов.
есть 2 знакполож. ряда ∑Ak,∑Bk так что 0≤Ak≤Bk k∈N
тогда если ∑Bk⇒то ∑Ak тоже ⇒ и наооборот если меньший ряд не сходится то и больший тоже.
11Признак Даламбера
∑Un c положительными членами сущ. lim Un+1/Un =l
n→∞
то ряд сходится если l<1 и расходится если l>1, если l=1 то вопрос о сходимости нерешён.
Признак Коши
∑An – знакополож. ряд lim ª√An=q
n→∞
q<1 – сходится ; q>1 – расходится.
12 Знакопеременный ряд а1-а2+а3-а4…+ (-1)в степ.(n-1)*An
An>0
Признак Лейбница:
Если члены ряда (знакопер) убывают а1>a2>a3>…An и
предел Аn при n→∞ =0 то ряд сходится
пример 1-1/2+1/3-1/4…+(-1)(n-1)*1/n
13 Имеет место функциональная зависимость между двумя переменными величинами х и у если задан закон y=f(x), согласно которому каждому х∈Х соответствует значение y∈Y. х-аргумент
y=kx+b – линейная ф-ия
y=ax²+bx+c – квадратичная ф-ия
Обратная ф-ия – ф-ия x=φ(y) наз. обратной ф-ией к прямой ф-ии y=f(x) если x=φ(f(x)) для всех х∈Х
Графики взаимно обратных ф-ий симметричны относительно прямой у=х.
y=Xª и y=LOGxA – примеры
14 Число B называется пределом ф-ии в f(x) при x, стремящемуся к x0 (или в точке x0) если для любого, сколь угодно малого положительного числа ε>0, найдётся такое положительное число δ(ε)>0 что для всех х не равных х0 и удовлетворяющих условию | x-x0 |<δ выполняется нерав-во | f(x)-B | < ε
lim f(x)=B
x→x0
Смысл состоит в том, что для всех значений х, достаточно близких к х0, значения ф-ии f(x) как угодно мало отличаются от числа В (по модулю)
15 lim f(x)=B
x→x0
Если B=f(x0), то ф-ия f(x) – непрерывна в точке х0.
св-ва :
lim c=c
x→x0
если f(x)=b, φ(x)=c то lim (f(x)±φ(x))=b±c
x→x0
lim (f(x)*φ(x))=b*c
x→x0
lim (f(x)/φ(x))=b/c (c≠0)
x→x0
Если f(x)≤φ(x)≤g(x) и lim f(x)=lim g(x) =b то lim φ(x)=b
x→x0 x→x0 x→x0
если при этом b=f(x0); c=φ(x0) то св-во 2 можно записать:
(Если f(x) или φ(х) непрерывны в т. х0 то в т.х0
непрерывны сумма, разность, произведение и
частное(φ(х0))≠0 этих функций
Если ф-ия непрерывна в каждой точке отрезка, то она непрерывна на этом отрезке
16 Линейная ф-ия непрерывна в любой точке А∈(-∞;+∞)
y=kx+b=f(x)
f(A)=kA+b
k≠0 ⇒ | f(x)-f(a) |<ε | kx-b-ka+b | <ε
| k (x-f) | <ε
| k |*| x-a | <ε
| x-a | < ε/| k |=δ(ε)
y=ax²+bx+c (-∞;+∞)
17 y=Bª (B>0)
Докажем, что y=Bª непрерывна на (-∞;+∞)
lim Bª=1
a→0
| Bª-1 | <ε 1) B=1
2) B>1
-ε < Bª-1 < ε 1-ε < Bª < ε+1
LOGb(1-ε)<a<LOGb(1+ε)
min {-LOGa(1-ε); LOGa(1+ε)}= δε
| x | < δε
LOGaB
18 y=cos x (-∞; +∞)
| cos x – cos a | < ε
| 2 sin (x-a)/2 + sin (x+a)/2 | < ε
2 | sin (x-a)/2 | + | sin (x+a)/2 | < ε
2 | sin (x-a)/2 | < ε
| x-a | < ε =δ(ε)
y=sin x (-∞; +∞)
y=tg x=sin x/cos x кроме x=π/2+πk
y=ctg x=cos x/sin x кроме x=πk
19 Первым замечательным пределом называется
lim sin x/x=1
x→x0
20 Второй замечательный предел
lim(1+1/a)ª=e
a→∞
Число е (число Эйлера, неперово число) играет важную роль в матанализе.
lim (1+a)¹’ª=e
a→0
21 Пусть имеется ф-ия y=f(x), определённая на (а; в), говорят что ф-ия имеет в т. х0∈(а; в) производную f ’(x0) если существует предел
lim (f(x)-f(x0))/(x-x0)
x→x0
Производной ф-ии y=f(x) в точке х0 называется предел отношения приращения ф-ии к приращению аргумента, когда приращение аргумента стремится к нулю.
Ф-ия имеющая производную в каждой точке интервала называется дифференцируемой на этом интервале.
Геометрический смысл производной: пр-ая f `(x0) есть угловой коэфф. (tg угла наклона) касательной, проведённой к кривой y=f(x) в точке х0 , k=f ‘(x0)
у=f ‘(x0)(x - x0)
Механический смысл производной: пр-ая пути по времени s ‘(t0) есть скорость точки в момент t0: V(t0)=s ‘(t0)
Определение для любой точки
22 Производная алгебраической суммы конечного числа дифференцируемых ф-ий равна такой же сумме производных этих ф-ий
(u±v)`=u`± v`
Производная произведения двух дифференцируемых ф-ий равна произведению пр-ой первого сомножителя на второй плюс произведение первого сомножителя на про-ую второго:
(uv)`=u`v + uv`
Постоянный множитель можно выносить за знак
производной
(cu)`=cu`
Производная произведения нескольких
дифференцируемых ф-ий равна сумме произведений
производной каждого из сомножителей на все остальные
(uvw)`=u`vw+uv`w+uvw`
23 Производная частного двух ф-ий u(x)/v(x), если v(x)≠0
равна дроби, числитель которой есть разность произведений знаменателя дроби на производную числителя и числителя дроби на производную знаменателя есть квадрат прежнего знаменателя: (u/v)`=(u`v-uv`)/v²; v≠0
(u/c)`=1/c*u`
(c/u)`=-cv`/v² c=const
24 (xª)`=axªˉ¹
25 (LNx)`=1/x
(eª)`=eª
Для дифференцируемой ф-ии с производной, не равной
0, производная обратной ф-ии равна обратной величине
производной данной ф-ии
X`y = 1/Y`x
26 (sin x)`=cos x
(cos x)`=-sin x
(tg x)`=1/cos²x
(ctg x)`=-1/sin²x
27 Если y=f(u) и u=φ(x) – дифференцируемые ф-ии от своих аргументов, то производная сложной ф-ии существует и равна производной данной ф-ии по промежуточному аргументу и умноженной на производную самого промежуточного аргумента по незавмсимой переменной х
y`=f`(u)*u`
y=f(u(x)) Fx`=Fu`*Ux`
Пример:
y=(√x+5)³ y`=?
y=u³, где u=√x+5
по формуле : y`=3u`*u`=3(√x+5)²(√x+5)`=3(√x+5)²/2√x
28 Дифференциалом ф-ии наз. линейная часть приращения ф-ии (относительно Δх), равная произведению производной на приращение независимой переменной.
dy=f`(x)Δx
Дифференциал независимой переменной равен приращению этой переменной.
Геометрический смысл: Дифференциал ф-ии есть приращение ординаты касательной, проведённой к графику ф-ии y=f(x) в данной точке когда х получает приращение Δх
29 При исследовании ф-ий используется следующий алгоритм:
1 ООФ, ОЗФ
2 Непрерывность ф-ии
3 Нахождение асимптот
4 Экстремумы и интервалы монотонности
5 Интервалы выпуклости и т. перегиба
6 Чётность нечётность, периодичность
7 Т. пересечения с Ох и Оу
(3)Если для некоторого х0 имеет место предел f(x)=∞ при
х→х0 то говорят, что х=х0 явл. вертикальн. асимптотой
f(x)
Если предел f(x)=b при x→∞ то говорят, что у=b явл.
горизонтальной асимптотой f(x)
Если предел f(x)/х=k при x→∞ (k≠0;k≠∞) и предел
(f(x)-kx)=b, то y=kx+b является наклонной асимпт-й
(4)Если производная ф-ии положительна (отрицательна)
внутри некоторого промежутка Х то ф-ия возрастает
(убывает) на этом промежутке
Если при переходе через т. х0 производная
дифференцируемой ф-ии меняет свой знак и в т. х0
равна 0 то х0-точка экстремума (минимума или
максимума)
(5)Точкой перегиба непрерывной ф-ии (f``(x)=0) наз. т. в