Смекни!
smekni.com

Математическая Логика (стр. 1 из 4)

Конспекты лекций по математической логике.

1. Теория алгоритмов

1.1 Различные подходы к определению алгоритма:

10. Неформальное понятие алгоритма (последовательность инструкций для выполнения действия).

20. Машина с неограниченными регистрами (МНР).

30 Машина Тьюринга – Поста (МТ-П).

40 Нормальные алгоритмы Маркова (НАМ).

1.1.1 Машина с неограниченными регистрами (МНР).

Имеется некое устройство, в котором счетное число ячеек памяти (регистров), в которых хранятся целые числа.

Допустимые команды:

Z(n) - обнуление регистра Rn.

S(n) - увеличение числа в регистре Rnна 1.

T(m,n) - копирует содержимое Rm в регистор Rn.

I(p,q,n) - если содержимое Rp = Rq то выполняется команда с номером n, если нет

следующая.

Программа для МНР должна быть последовательностью команд Z, S, T, I с определенным порядком, выполняемые последовательно.

Тезис Черча (Churcha): Первое и второе определение алгоритма эквивалентны между собой. Любой неформальный алгоритм может быть представлен в программе для МНР.

1.1.2 Машина Тьюринга - Поста.

Имеется устройство просматривающее бесконечную ленту, где есть ячейки содержащие элементы алфавита:

, где
- пустой символ (пустое слово), который может принадлежать и не принадлежать А. Также существует управляющая головка (устройство) (УУ)/(УГ), которая в начальный момент расположена в определенном месте, в состоянии
. Также существуют внутренние состояния машины:

Слово в данном алфавите - любая конечная упорядоченная последовательность букв данного алфавита, притом длина слова это количество букв в нем (у пустого слова длина 0).

Допустимые команды:

1)
,где
.2)
(остановка программы).
Последовательность команд называется программой, если в этой последовательности не встречается команд с одинаковыми левыми частями. Машина останавливается если она не находит команды с левой частью подобной текущей.

1.1.3 Нормальные алгоритмы Маркова.

Тип машины перерабатывающий слова, в которой существует некий алфавит

, для которого W - множество всех слов.

Допустимые команды: (Для машин этого типа важна последовательность команд.)

где
Пример:
Программа:

1.1.4 Реализация функции натурального переменного.

но мы допускаем не всюду определенную функцию.

то это означает, что

притом

,если fне определена, то и программа не должна ничего выдавать.

притом

,если fне определена, то и программа не должна ничего выдавать.

(

, а числа представляются в виде
,например
.)

1.2Эквивалентность трех подходов к понятию алгоритм.

1.2.1Теорема об эквивалентности понятия вычислимой функции.

вычислима: (
)

1) Если существует программа МНР, которая вычисляет эту функцию.

2) Если существует программа МТ-П, которая вычисляет эту функцию.

3) Если существует программа НАМ, которая вычисляет эту функцию.

Использование НАМ:

Теор.: Классы функций вычислимых на МТ-П, с помощью НАМ и с помощью МНР совпадают.

Пусть

которая вычисляется на МТ-П, вычислим её на НАМ.

МТ-П:

НАМ:

Команда МТП:

преобразуется по правилам:

Команда МТП:

2. Булевы функции.

2.1 Основные определения

2.1.1 Декартово произведение

- мн-во всевозможных упорядоченных пар элементов из А и В.

Пример:

2.1.2 Декартова степень произвольного множества.

Опр:

- множество всевозможных упорядоченных наборов длины n , элементов множества А.

2.1.3 Определение булевой функции от n переменных.

Любое отображение

- называется булевой функцией от n переменных, притом множество

2.1.4 Примеры булевой функции.

1)

логическая сумма (дизъюнкция).

2)

логическое умножение (конъюнкция).

3)

сложение по модулю два.

4)

логическое следствие (импликация).

5)

отрицание.

2.1.5 Основные булевы тождества.

1)

(ассоциативность)