Именно это свойство и принял Урысон за новое определение размерности. Фигура называется имеющей размерность n, если ее можно разбить на сколь угодно малые замкнутые части так, чтобы ни одна точка не принадлежала n+2 различным частям, но при
Рис. 33 Рис. 34
любом достаточно мелком разбиении найдутся точки, принадлежащие n+1 различным частям.
Используя это определение размерности, Урысон доказал что размерность квадрата равна 2, куба – 3 и т. д. А потом он показал, что это определение равносильно первоначально данному.
Построенная Урысоном теория размерности произвела глубокое впечатление на весь математический мир. Об этом ярко говорит следующий эпизод. Во время заграничной командировки Урысон сделал доклад о своих результатах в Геттинге. До прихода нацистов к власти Геттингский университет был одним из основных математических центров. После доклада руководитель геттингенской математической школы знаменитый Давид Гильберт сказал, что эти результаты надо опубликовать в журнале «Mathematische Annalen» - одном из главных математических журналов того времени. Через несколько месяцев Урысон снова делал доклад в Геттингене и Гильберт спросил у своего помощника по журналу, напечатана ли уже работа Урысона. Тот ответил, что работа рецензируется. «Но я же ясно сказал, что ее надо не рецензировать, а печатать!» – воскликнул Гильберт. После столь недвусмысленного заявления статья была немедленно напечатана.
В течение трех лет продолжалась не имеющая равных по глубине и напряженности научная деятельность Урысона (за это время он опубликовал несколько десятков научных работ). Трагический случай оборвал его жизнь – он утонул 17 августа 1924г., купаясь во время шторма в Бискайском заливе. За день до смерти он закончил очередную научную работу.
После смерти П. С. Урысона остались многочисленные черновики и наброски неопубликованных результатов. Его ближайший друг (и соавтор по многим работам) Павел Сергеевич Александров, отложив на некоторое время свои исследования, подготовил эти работы к печати, сделав тем самым и эти результаты Урысона достоянием всех математиков. В настоящее время теория размерности стала важной главой математики.