Смекни!
smekni.com

Математические основы теории систем (стр. 2 из 13)

Если х - произвольная точка пространства Х α - ве[ВЮЮ1] [ВЮЮ2] щественная переменная, меняющаяся от -∞ до +∞, то dx будет представлять собой одномерное подпространство Х, проходящее через х(при α =0), как показано на рисунке 2.

x2

3

dx


2 x1

Такое одномерное подпространство будем обозначать R1. Предположим, что среди бесконечного множества одномерных пространств R1 найдутся такие, которые инвариантны относительно у=Ах, т.е. для любого x∈R1, имеет место у=Ах∈R1.

Обозначим через ℷ отношение у к х, которое при этом будет просто вещественным числом, т.е. можно записать у=ℷх, таким образом если R1 -инвариантное пространство, то для х∈R1 имеет место равенство:

(4) Ах=ℷх

Вектор х≠0, удовлетворяющий соотношению (4) называют собственным вектором матрицы А, а число ℷ - собственным значением матрицы А.

Для определения характеристических чисел матрицы перепишем соотношение (4) в ином виде, введя тождественное преобразование х=Iх. При этом получим:

(5) (А-ℷI)х=0

Соотношение (5) представляет собой систему линейных однородных уравнений, которая может быть записана в явном виде как:

(a11-ℷ)x1+a12x2+...+a1nxn=0;

(6) a21x1+(a22-ℷ)x2+...+a2nxn=0;

.........................

an1 x1+an2x2+...+(a nn-ℷ)xn=0;

Матрица вида (А-ℷI) (6) называется характеристической матрицей А. Определитель характеристической матрицы называется характеристическим многочленом матрицы А. Корни характеристического многочлена матрицы называются характеристическими числами этой матрицы. Из свойств решения уравнения (6) нетривиальное решение (отличное от нуля) возникает только тогда, когда имеется бесчисленное множество решений:

(7) det(A-ℷI)+a0n+a1n-1+....+an-1ℷ=0

Подставив любое собственное значение в исходную систему уравнений (6), получим уравнение:

(8) (А-ℷiI)х=0

которое имеет непрерывное решение, так как det(A-ℷiI)=0

Это решение дает вектор хi, определяемый с точностью до скалярного множителя. Этот вектор называется собственным вектором матицы А.

Свойства:

1. Если собственные числа матрицы А различны (корни характеристического уравнения не равны), то порождаемые или собственные векторы образуют систему линейно независимых векторов.

2. Если матрица А симметрическая, то собственные числа такой матрицы всегда вещественны, а собственный вектор в матрице образует систему ортогональных векторов.

Линейные пространства, элементами которых являются, упорядоченные последовательности n-вешественных чисел называются векторами.

ДЕЙСТВИЯ НАД ВЕКТОРАМИ.

Упорядоченные последовательности из n - чисел х(1),...,х(n), могут быть записаны в виде вектор - столбца или вектор - строки;

x(1) n n

(9) х= ..... = x)i) ; (x(1),...,x(n))=(x(i))

x(n) 1 1

Эти числа, составляющие вектор, называются компонентами вектора.

Если один из этих векторов обозначить буквой х, то другой будем обозначать х и называть транспонированным вектором.

n

(10) х=(х(i)) =(х(1),...,х(n))

1

Число n компонент вектора называется его размерностью.

СВОИСТВА ВЕКТОРОВ.

а) х=у, если равны их компоненты:

x(i)=y(i)

x(1) y(1) x(1)+y(1)

б) х+у= ...... + ...... = ........... -сумма векторов.

x(n) y(n) x(n)+y(n)

в) Разность векторов х-у представляет собой вектор z, такой, что у+z=х.

г) умножение вектора на скаляр

x(1) αx(1)

αx[ВЮЮ3] =хα=α ....... = .........

x(n) αx(n)

СКАЛЯРНОЕ ПРИЗВЕДЕНИЕ ВЕКТОРОВ.

x1 y1

Пусть х= х2 и у= у2 два вектора в трех мерном

x3 y3

пространстве. Скалярным произведением этих векторов называют скалярную величину:

(11) хTу=уTх=х1у12у23у3

Нормой или длинной вектора х в евклидовом пространстве называют число:

(12) х = х =(хTх)½ , где х -норма вектора х.

Линейное пространство в котором определено скалярное произведение называется евклидовым пространством.

БАЗИС ЛИНЕЙНОГО ПРОСТРАНСТВА.

Пусть имеем систему векторов

(13) х1, х2, х3,..., хn

Базисом (базой) системы векторов (13) называется такая линейно-независимая ее подсистема, через которую линейно выражаются все указанные векторы.

УГОЛ МЕЖДУ ВЕКТОРАМИ. ОРТОГОНАЛЬНЫЕ ВЕКТОРЫ.

Пусть х=(х1, х2) и у=(у1, у2) - два вектора на плоскости. Выберем систему координат так, чтобы ось абсцисс совпадала с направлением вектора х, так что x1= x , х1 =0 (рис.3)

2

y2 y

α x

y1 1

обозначим через угол α между векторами х и у при этом

хTу=х1у12у2= х * у cosα

Угол между векторами определяется:

α=arccos(xTy/ x y )

при │х│=1 скалярное произведение хTу определяет проекцию вектора у называется ортогональным, если угол между ними равен 90, т.е.

если хTу=0.

МАТРИЦЫ И ЛИНЕЙНЫЕ ПРЕОБРАЗОВАНИЯ.

ПОНЯТИЕ МАТРИЦ.

Матрицей А размером m*n называют таблицу, содержащую m-строк и n-столбцов, элементами которой являются вещественные или комплексные числа

a11 .......... a1n

A= ...................... =[aij]

am1 .......... amn

Если m=n, то матрицу называют квадратной.

Матрицы А=[аij] и В=[вij] равны (А=В) в том и только в том случае, если имеют один и тот же размер аijij для всех ij.

Преобразованием линейного n-мерного пространства Х называют оператор А, отображающий это пространство в m - мерное линейное пространство Y:

(1) А:Х→Y

Таким образом, преобразование А ставит в соответствие каждому вектору х пространства Х вектор

(2) Y=А-х, пространства Y.

Преобразование А называют линейным, если выполняется условие:

(3) А(х12)=Ах1+Ах2, А(ℷхi)=ℷАх

Условие (3) будет выполнятся, если между компонентами хi и уj векторов х и у имеется линейная зависимость вида:

n ___

(4) у(i)= ∑ aijx(j), i=1,m ,где аij - произвольное число

j=1 ____ ___

Совокупность чисел аij, i=1,m; ;j=1,n образуют матрицу:

a11......a1n