eЛt=
0......eℷnt
Рассмотренные способы дают решение в аналитическом виде и требуют больших затрат времени на определение собственных значений матрицы А, т.е. корней характеристического уравнения. В приведенных ниже способах оба этих момента отсутствуют.
5 При расчете матрицы перехода с помощью формулы Тейлора из (19)
p-1
(22) Ф(t)= ∑ Ai ti/t!+Rp
i=0
в системах с сосредоточенными параметрами для отдельных элементов матриц получим полиномы в функции t, которые могут быть записаны в виде сумм показательных функций e.
6. Путем программирование на аналоговой вычислительной машине элементы матрицы перехода могут быть получены в виде кривых, численно оценены или аналитически аппроксимированы.
Модуль вход-выход непрерывного объекта управления в форме векторно-матричного дифференциального уравнения
вектор входа U=[U1, U2,...,Um]T
вектор выхода x=[x1,x2,...,xm]T
вектор состояния q=[q1,q2,...,qm]T
Уравнение состояния (векторное дифференциальное уравнение)
(23) q(t)= Aq(t)+Bu(t)
Уравнение входа
(24) x(t)= Cq(t)+Du(t)
Для одномерной системы n-го порядка эти уравнения упрощаются:
(25) q(t)=Aq(t)+bu(t)
(26) x(t)=CTq(t)+du(t)
(27) q1 = a11 a12 q1 + b1 U; при n=2q2 a21 a22 q2 b2
(28) x=|C1 С2| q1 + dUq2
Таким образом, векторное дифференциальное уравнение (25) служит компактной формой записи для системы из n скалярных дифференциальных уравнений первого порядка
(29) q = a11q1+a12q2+b1U;
q = a21q1+a22q2+b2U.
Уравнение входа для одномерной системы представляет собой скалярное алгебраическое уравнение
(30) x= c1q1+c2q2+dU
ВЕСОВАЯ ФУНКЦИЯ.
Прежде всего нужно определить выходной сигнал xv(t), соответствующий входному сигналу Uv(t)
(31) Uv(t)=U(V)dV δ(t-V)
U(V)dV - площадь импульса
δ(t-V)- единичный импульс при t=V
Соответствующий этому выходной сигнал представляет реакцию на импульсное воздействие, или соответственно весовую функцию g(t-V), характеризуемую импульсами площадью U(V)d .
Если уравнения системы представлены в стандартной форме записи (23), (24), то можно использовать общую форму решения уравнения переходного процесса:
t
(32) q(t)= Ф(t)q(0)= ⌡ Ф(t-Ʈ) BU(Ʈ)dƮ= qсв(t)+qпрн(t)
0
В рассматриваемом здесь случае переходного процесса при
возмущающем воздействии и нулевых начальных условиях для выраженного в относительных единицах входного сигнала Uδ
Uδ(t)=δ(t)
получим характеристику состояния в относительных
t
(33) qδ(t)= ⌡ Ф(t-Ʈ) bδ(Ʈ) dƮ
0
Для импульса δ(Ʈ), возникающего в момент времени Ʈ=0, интервал интегрирования должен быть принят от -0
Ф(t)b , при t≥0(34) qδ(t)=
0, при t<0
Весовую функцию находят путем подстановки (34) в уравнение выхода (26)
(35) q(t)=xδ(t)=CTqδ(t)+dUδ(t)= CTФ(t)b+dδ(t) при t≥0
Для определения элементарного выходного сигнала xδ(t), соответствующего уравнению (31), нужно учесть еще смещение входного импульса по времени и его интенсивность (площадь).
(36) xv(t)=U(V) dV g(t-V)=U(V) dV[CTФ(t-V)b+dδ(t-V)]
U
x(t)=U(V)dVq(t-V)Элементарный входной и выходной сигналы при разложении на импульсы.
ПЕРЕДАТОЧНЫЕ ФУНКЦИИ И ИХ СВОЙСТВА.
Пусть система A линейна и стационарна и пусть h(*) является ее импульсной реакцией.
Предположим, что существует преобразование Лапласа для h. Тогда это преобразование
∞
(37) H(S) ≜ ⌡ e-st h(t) dt
-∞
называется передаточной функцией H системы A.
Передаточная функция является оператором, характеризующим передачу сигнала линейным передаточным звеном, путем умножения которого, на изображении входного сигнала получается преобразованный
входной сигнал звена, имевшего до этого рабочую точку q=0.
В случае системы со многими входами и выходами передаточная функция становится матричной передаточной функцией H(S);
ее (i,j)- представляет собой преобразование Лапласа для hij(t), т.е. для установившегося режима i-го выхода на единичный импульс, приложенный к j-му входу в момент t=0.
Пусть - линейная стационарная система, и пусть H(S)- ее передаточная функция. Если y является реакцией системы при нулевом состоянии на входе воздействия U, то
(38) Y(S)= H(S) V(S)
где Y и V - преобразования Лапласа для y и U.
Передаточная функция H(S) идентична весовой функции g(t), преобразованной по Лапласу.
1.5 ОБЪЕКТЫ УПРАВЛЕНИЯ С ДИСКРЕТНЫМ ВРЕМЕНЕМ.
В случае, когда одна или более переменных могут наблюдаться только периодически, причем период наблюдения достаточно мал, так то все переменные можно восстановить с приемлемой точностью по их квантованным значениям, можно записать уравнения рассматриваемой
системы для дискретных (квантованных) значений для всех переменных. Иными, словами в качестве такой системы берется дискретная по времени система.
Исследование дискретных систем во многом подобно исследованию непрерывных систем.
Преобразование непрерывных систем в дискретные.
Пусть дана непрерывная система Y с уравнениями состояния
(1) x= Ax + Bu;
(2) y= Cx + Du, где
A,B,C,D суть (n*n), (n*r), (p*n) и (p*r)- постоянные матрицы
соответственно.
Предположим, что компоненты входного вектора замеряются периодически и фиксируются (сохраняются неизменными) в течении каждого интервала (kT,(k+1)T), где k=...,-1,0,1...
S определяется ур-ми (1),(2) |
рис.1
На рисунке 1 показано, что такая операция над входным вектором реализуется с помощью блока квантования, включенного между входом U и системой Y.
Если α(t) является входом блока квантования, то его выход α0 будет ступенчатой функцией
α0(t)=α(kT), kT<t≤(k+1)T
Будем полагать, что вход измеряется через каждые T секунд, где T- период повторения или период квантования. Вход системы задается последовательностью векторов {Uk}, причем Uk=U(kT+).
Период повторения T выбирается достаточно малым, так что интерполирование последовательностей {xk}, {yk}, где xk= x(kT+), yk= y(kT+), определяет функции x(t), y(t) с приемлемой точностью для всех t. По этой причине имеет
смысл искать зависимости между последовательностями {xk},{yk} и входной последовательностью. Наиболее удобно представить такие последовательности в виде рекуррентных соотношений выражающих xk+1 и yk+1 через xk и Uk . Используя выведенные ранее уравнения и вводя обозначение:
(3) F=exp AT,
T
(4) G=( ⌡ [exp(AƮ)]dƮ)B, получим
0
получим
(5) xk+1= Fxk+Cuk
(6) yk+1= Cxk+1+Duk+1
Выражения (5),(6) являются уравнениями состояния дискретной системы, вход, выход и состояние которой определяется последовательностями векторов {uk}, {xk}, {yk} соответственно. Поскольку A,B,C,D постоянные матрицы, эта система линейна и стационарна.
Из (5) можно найти xk как функцию начального состояния x0 и последовательности {Ui}r-1
k-1
(7) xk=Fkx0+ ∑ FiGUk-i-1, k=1,2,3,...
i=0
РЕШЕТЧАТЫЕ ФУНКЦИИ.
Функции, определенные только в некоторых точках t1,t2 и т.д называются решетчатыми.
Пусть t= nT- равностоящие точки, где n- любое целое число, а T- постоянная, называемая периодом дискретности.
Тогда определенные в этих точка функции f[nT]
f[nT]
Любой f(t)- непрерывной можно поставить в соответствие некоторое множество решетчатых функций, если представить переменную t=nT+ℰT (0≤ℰ≤1). При каждом фиксированном значении р переменной функцию f(nT+ℰT)