Смекни!
smekni.com

Методика изучения числовых систем (стр. 6 из 6)

Например: 27 ·

= 12.

Составим обратную задачу, взяв за искомое число множитель. Эта задача решается делением целого числа на целое, которое рас­смотрено раньше.

Составим вторую обратную задачу, взяв за искомое множимое.

Запишем:

х·

=12.

Эта задача и для дробных чисел решается действием деления 12 :

= х.

Так как х·

= 12 или
·х = 12, то, чтобы найти х, мы находим число
которого равны 12, отсюда х = (12 : 4) · 9 = 27.

При помощи такого рода рассуждений, основой которых служит определение, учащиеся приходят к выводу, что при делении на дробь отыскивается число по данной величине его дроби. Рассмотрев примеры на умножение целого числа на дробь в случае дробного произведения и дроби на дробь и составив обратные задачи, уча­щиеся получают все случаи деления дробей. Проделав несколько упражнений, учащиеся выводят .правило деления целого на дробь, также дроби на дробь.

Неправильно строить изучение деления на дробь, взяв за опре­деление, что разделить какое-нибудь число на дробь - значит найти число по данной величине его дроби. Это противоречит научному построению изучения действий над числами, при котором вычитание я деление любых чисел определяются как действия, обратные сложению и умножению.

Полезно напомнить учащимся, что так как умножение обладает переместительным законом, то для отвлеченных чисел деление на дробь имеет одинаковый смысл независимо от того, какой из двух Сомножителей - множимое или множитель - является данным и какой искомым.

Но при решении конкретных задач деление на дробь в том случае, когда искомым является множитель (деление по содержанию), имеет другой смысл по сравнению с тем случаем, когда искомым является множимое. Например, рассмотрим задачу.

Из 6м проволоки нужно сделать прутики для счетов, длиною каждый по

м. Сколько выйдет таких прутиков?

Для решения этой задачи 6м :

м, в этом случае частное показывает, сколько раз
м содержится в 6 м. или во сколько раз 6м больше
м.

Для отыскания частного можно провести следующие рассуждения: 6м =

м,
м содержится в
м 8 раз.

Но можно рассуждать и так: 6м:

м = х;
м · х = 6 м. Но, по переместительному закону умножения,
·х = х·
.

Следовательно, и в этом случае мы можем деление выполнять по тому же правилу, что и при нахождении всего числа по данной его части.

Рассмотрим вторую задачу.

Площадь одного участка

га, другого
га. Какую часть пло­щадь второго участка составляет от площади первого?

В этой задаче требуется найти дробь, при умножении на которую

га получим
га, для этого
га :
га. Обозначим частное через х, получим
га·х=
га. Но, по переместительному закону умножения, получаем: х·
=
. Следовательно, и в этом случае мы можем применить выведенное правило деления на дробь.

Приходим к выводу: при делении на дробь решаются двоякого рода задачи: 1) когда по дроби какого-нибудь числа ищется это число и 2) когда узнаем, сколько раз одно число содержится в дру­гом или какую дробь одно число составляет от другого. Выведен­ное правило деления на дробь годится и для случая деления по содержанию. Следует таким же образом показать, что и при деле­нии на целое число по содержанию можно пользоваться ранее выве­денным правилом. Необходимо обратить внимание учащихся, что при делении на правильную дробь в частном получается число, большее делимого. Так же как при умножении, следует рассмотреть на частных примерах возможные случаи соотношения между част­ным и делимым и установить, при каком делителе частное больше делимого, при каком — частное равно делимому, при каком — частное меньше делимого.

Не следует забывать важного значения упражнений в придумы­вании учащимися различных простых задач, которые решались бы умножением на дробь, делением на дробь. Это является крите­рием того, образовалось ли в сознании учащихся новое понятие о действии.

После того как учащиеся основательно поняли и усвоили смысл деления на дробь, можно дать понятие о числе, обратном данному, и познакомить учащихся с общим правилом деления, пригодным для всех случаев. Это правило заменяет деление на дробь умножением на число, обратное делителю, и дает возможность распространять некоторые свойства произведения на частное; оно является новым обобщением, полученным благодаря введению дробных чисел.

Необходимо обратить внимание учащихся на рациональные приемы вычислений с дробями в тех случаях, когда приходится выполнять последовательно несколько умножений и делений; следует прежде обозначить действия, затем производить возможные сокра­щения и только после этого делать вычисление. Например;

Литература

1. Макарычев Ю.Н., Миндюк Н.Г. Алгебра в 6-8 классах М.:Просвещение/ 1988.

2. Калягин Ю.М., Аганясян В.А., Саннинский В.Я., Луканкин Г.Л. Методика преподавания математики в средней школе. Учебное пособие для студентов физико - математических факультетов педагогических институтов. - М.: Просвещение, 1975.

3. Ляпина С.Е. Методика преподавания математики в средней школе, 1975г.

4. Рогановский Н. М. Методика преподавания математики в средней школе. - Мн.: Народная Асвета, 1990.

5. Черкасов Р.С., Столяр А.А. Методика преподавания математики в средней школе / 1985.