S=1/2Ah
причем в качестве основания каждого треугольника выберем диагональ d1. В этом случае высоты треугольников будут давать в сумме диагональ d2, а в отдельности будут неизвестны.
Для использования в решении формулы (*) введем вспомогательный отрезок – высоту OD треугольника ACD, длину которого обозначим за x. Тогда длина высоты OB треугольника ABC будет равна (d2 – x). Вычислим теперь площадь четырехугольника ABCD:
S=1/2d1x + 1/2d1(d2-x)=1/2d1d2
8. Метод площадей
Характеристика метода. Из названия следует, что главным объектом данного метода является площадь. Для ряда фигур, например для треугольника, площадь довольно просто выражается через разнообразные комбинации элементов фигуры (треугольника). Поэтому весьма эффективным оказывается прием, когда сравниваются различные выражения для площади данной фигуры. В этом случае возникает уравнение, содержащее известные и искомые элементы фигуры, разрешая которое мы определяем неизвестное. Здесь и проявляется основная особенность метода площадей – из геометрической задачи он «делает» алгебраическую, сводя все к решению уравнения (а иногда системы уравнений).
Само сравнение выражений для площади фигуры может быть различным. Иногда площадь фигуры представляется в виде суммы площадей ее частей. В других случаях приравниваются выражения, основанные на различных формулах площади для одной и той же фигуры, что позволяет получить зависимость между ее элементами.
Суть метода площадей не ограничивается только описанным выше приемом. Иногда бывает полезно рассмотреть отношение площадей фигур, одна из которых (или обе) содержит в себе искомые элементы.
Задача. Найти формулу для площади произвольного треугольника.
Решение. Пуст S – площадь треугольника ABC (рис. 7). Проведем высоту BD и получим прямоугольные треугольники ABD и CBD. Очевидно, что S = SABD + SBCD. Воспользуемся теперь известным правилом нахождения площади прямоугольного треугольника и получим:
Заметим, что данное решение было проведено для остроугольного треугольника. В случае же тупоугольного треугольника результат не изменится, отличие будет лишь в исходном соотношении для площади S = SABD – SBCD.
9. Аналитико – синтетический метод.
Анализ – логический приём, метод исследования, состоящий в том, что изучаемый объект мысленно (или практически) разбивается на составные элементы (признаки, свойства, отношения), каждый из которых исследуется в отдельности как часть расчлененного целого.
Синтез – логический прием, с помощью которого отдельные элементы соединяются в единое целое (другими словами обратный анализу).
Не следует отделять эти методы друг от друга, так как они составляют единый аналитико-синтетический метод. Так при решении сложной задачи она с помощью анализа разбивается на ряд более простых задач, а затем при помощи синтеза происходит соединение решений этих задач в единое целое.
Пример: (использование анализа при решении иррациональных уравнений)
- =1) рассмотрим левую часть:
< т.к. x-3<x+92) следовательно
- <03) но
>04) приходим к противоречию, а значит
-5) уравнение решения не имеет.
10. Метод сведения к ранее решенным.
Суть метода заключается в том , что бы увидеть в данной задаче ранее решенную и сведению решаемой задачи с помощью последовательных преобразований к ней.
Если, например, нужно решить уравнение то обычно составляют такую конечную последовательность уравнений, эквивалентных данному, последним звеном которого является уравнение с очевидным решением..
Данный метод используется очень широко в тригонометрии (при решении уравнений и неравенств). Так в самом начале изучения данной темы учащимся предлагают заучить основные тригонометрические тождества, затем формулы сложения, приведения, суммы и разности. А в дальнейшем сначала вырабатываются умения и навыки решения простейших тригонометрических уравнений.
Пример: Найдите значение других трех основных тригонометрических функций, если sinα= - 0.8, Π<α<3Π/2
После этого переходят к более сложным выражениям, но теперь уже формируются навыки по приведению их к простейшим.
Прием "сведения" лежит в основе решения геометрических задач на построение. В каждой задаче этого вида содержится требование: исходя из данных фигур (или данных их элементов), с помощью указанных конструктивных элементов построить фигуру, удовлетворяющую определенным условиям. Это означает, что требуемое построение должно быть сведено к так называемым элементарным построениям, выполняемым реальными инструментами.
Метод сведения находит постоянные применения при решении текстовых задач арифметическими способами. Суть дела здесь состоит в том, что данная задача сводится к простым задачам.
Решение задач на доказательство теорем в своей основе имеет также сведение: доказываемое утверждение сводится к ранее доказанным теоремам и ранее введенным аксиомам и определениям данной научной области. Доказать - это, значит, свести новую теорему (задачу) в конечном счете, к аксиомам.
Вообще решение большинства задач начинается с того, что выясняют можно ли данную задачу свести к более простой рассмотренной ранее.
Однако не стоит увлекаться данным методом, поскольку есть опасность того, что учащиеся и в дальнейшем будут мыслить своего рода «по шаблону».
Вообще, рассмотрение практически любой задачи рекомендуют начинать с того, что следует посмотреть, нет ли в ней скрытого в условии более простого для решения случая.
11. Метод математической индукции
Слово индукция по-русски означает наведение, а индуктивными называют выводы, на основе наблюдений, опытов, т.е. полученные путем заключения от частного к общему.
А) Суть метода математической индукции.
Во многих разделах арифметики, алгебры, геометрии приходится доказывать истинность предложений А(n), зависящих от натуральной переменной. Доказательство истинности предложения А(n) для всех значений переменной часто удается провести методом математической индукции, который основан на следующем принципе.
Предложение А(n) считается истинным для всех натуральных значений переменной, если выполнены следующие два условия:
1. Предложение А(n) истинно для n=1.
2. Из предположения, что А(n) истинно для n = k (где k – любое натуральное число), следует, что оно истинно и для следующего значения n=k+1.
Этот принцип называется принципом математической индукции. Обычно он выбирается в качестве одной из аксиом, определяющих натуральный ряд чисел, и, следовательно, принимается без доказательства.
Под методом математической индукции понимают следующий способ доказательства. Если требуется доказать истинность предложения А(n)для всех натуральных n, то, во-первых, следует проверить истинность высказывания А(1) и, во-вторых, предположив истинность высказывания А(k), попытаться доказать, что высказывание А(k+1)истинно. Если это удается доказать, причем доказательство остается справедливым для каждого натурального значения k, то в соответствии с принципом математической индукции предложение А(n)признается истинным для всех значений n.
С помощью метода математической индукции можно доказывать различные утверждения, касающиеся делимости натуральных чисел.
Пример 1 .
Докажите , что если от квадрата нечетного числа отнять 1 , то получим число , которое делится на 8
Доказательство.
(2n+1)² - 1 : 8 n e N
1.Проверим n=1
(2.1 + 1 )² - 7 : 8
8:8 – истина
2.Предположим , что верно n= k
(2k+1)²-1 :8
3. Докажем , что истинно для n = k +1
(2(k+1)+1)² -1 :8
(2(k+1)+1)² -1 = 4(k+1)(k+2) , k>1 , keN
Т.о. 4(k+1)(k+2) :8
Значит (2n + 1 )² - 1 : 8
Ч.Т.Д.
Б) Применение метода математической индукции к суммированию рядов.
Пример 1. Доказать формулу
, n – натуральное число.Решение.
При n=1 обе части равенства обращаются в единицу и, следовательно, первое условие принципа математической индукции выполнено.