Практически минимизация невязки rU(Az,и) производится приближенно и возникает следующий важный вопрос об эффективности метода подбора, т. е. о возможности как угодно приблизиться к искомому точному решению.
Пусть {zn} — последовательность элементов, для которой rU(Azn,u) ®0 при n®¥. При каких условиях можно утверждать, что при этом и rF(zn,zT) ®0, т. е. что {zn} сходится к zT?
Это вопрос обоснования эффективности метода подбора.
2.1.2. Стремление обосновать успешность метода подбора привело к установлению общефункциональных требований, ограничивающих класс возможных решений М, при которых метод подбора является устойчивым и zn®zT. Эти требования заключаются в компактности множества М и основываются на приводимой ниже известной топологической лемме.
Лемма.Пусть метрическое пространство F отображается на метрическое пространство U и Uo — образ множества Fo, FoÌF, при этом отображении. Если отображение F®U непрерывно, взаимно однозначно и множество Fo компактно на F, то обратное отображение Uo®Fo множества Uoна множество Fo также непрерывно по метрике пространства F.
Доказательство. Пусть z — элементы множества F (zÎF), а u—элементы множества U (uÎU). Пусть функция u=j(z) осуществляет прямое отображение F®U, а функция z=y(u)—обратное отображение U®F.
Возьмем произвольный элемент u0 из Uo. Покажем, что функция y(u) непрерывна на u0. Предположим, что это неверно. Тогда существует такое число e1 > 0, что для всякого d > 0 найдется элемент и1 из Uo, для которого rU(и1, и0) <d, в то время как rF(z1,z0)>= e1. Здесь z=y(u1), z0=y(u0) и z1ÎFo, z0ÎF0.
Возьмем последовательность {dn} положительных чисел dn , сходящуюся к нулю при п®¥. Для каждого dnнайдется элемент un1 из Uo, для которого rU(иn1, и0)<dn , но rF(zn1,z0)>= e1 , где zn1=y(un1). Очевидно, последовательность {un1} сходится к элементу u0. Так как zn1 принадлежат компактному на F множеству Fo, то из последовательности {zn1} можно выбрать подпоследовательность {Z1nk}, сходящуюся по метрике F к некоторому элементу z0ÎF. При этом z01¹z0 , так как для всякого nkrF(Z1nk,z0)>= e1 , следовательно и rF(z10,z0)>= e1 . Этой подпоследовательности {Z1nk} отвечает последовательность элементов u1nk= j (Z1nk) из Uo, сходящаяся к u10= j(z10) и являющаяся подпоследовательностью последовательности {u1n}. Так как последовательность {u1n}сходится к и0 =j(z0), то u10=j(z10)=u0=j(z0) , т. е. j(z0)= j(z10). В силу взаимной однозначности отображения F®U z10=z0, что противоречит ранее установленному неравенству z10¹z0. Лемма доказана.
Эту лемму можно сформулировать короче.
Если отображение Fo-Uo компакта Fo на множество Uo взаимно однозначно и непрерывно, то обратное отображение Uo-Fo также непрерывно.
Эквивалентность этих формулировок следует из того, что замыкание F*0 множества Fo, компактного наF, является компактом.
Таким образом, минимизирующая последовательность {zn} в методе подбора сходится к zTпри n-¥, если:
а)zT принадлежит классу возможных решений М;
б) множество М — компакт.
Пусть оператор А непрерывен и вместо точной правой части uT мы имеем элемент ud такой, что rU(ud,uT)<= d, причем ud принадлежит множествуAM (образу множества М при отображении его с помощью оператора A) и М есть компакт. Пусть {dn} — последовательность положительных чисел таких, что dn-0 при n-оо. Для каждого п методом подбора можно найти такой элемент zdn , что rU(A zdn ,ud)<=dn. Элементы zdn будут близки к решению zT уравненияAz=uT. В самом деле, при отображении с помощью непрерывного оператора образAM компакта М есть компакт и, следовательно, по лемме обратное отображение, осуществляемое оператором A-1, непрерывно наAM. Так как
rU(A zdn ,u)<=rU(A zn ,ud)+rU(ud,uT),
то
rU(A zdn ,uT)<=dn+d=gdn.
Из этого неравенства и из непрерывности обратного отображения АМ- М следует, что rF(zdn ,zT)<= e(gdn) , причем e(gdn)-0 приgdn-0. Таким образом, при нахождении приближения zdn к zT надо учитывать уровень погрешности d правой части ud.
2.1.3. На основе изложенных соображений М. М. Лаврентьев сформулировал понятие корректности по Тихонову. В применении к уравнению (2; 0,1) задача называется корректной по Тихонову, если известно, что для точного значения u=uT существует единственное решение zT уравнения (2; 0,1), AzT=uT,принадлежащее заданному компакту М.В этом случае оператор А-1 непрерывен на множествеN=AM и, если вместо элемента uTнам известен элемент ud такой, что rU( uT, ud)<=dи udÎN, то в качестве приближенного решения уравнения (2; 0,1) с правой частью u= ud можно взять элемент zd=A-1ud.При d-0(udÎN) zdбудет стремиться к zT. МножествоF1 (F1ÌF), на котором задача нахождения решения уравнения (2; 0,1) является корректно поставленной, называют классом корректности. Так, если операторА непрерывен и осуществляет взаимно однозначное отображение, то компакт М, к которому принадлежит zT, является классом корректности для уравнения (2; 0,1). Таким образом, если задача (2; 0,1) корректна по Тихонову и правая часть уравнения uÎAM, то метод подбора с успехом может быть применен к решению такой задачи. На первый вопрос дан исчерпывающий ответ.
Рассмотрим задачу решения интегрального уравнения Фредгольма первого рода
(2;1,1)на множестве М1 монотонно убывающих (возрастающих) и равномерно ограниченных функций |z(s)|<=B. Она корректна по Тихонову, так как множествоM1 — компакт в пространстве L2.
Действительно, возьмем любую последовательность E= {z1(s), z2(s), .... zn(s), ...} изM1. Согласно теореме Хелли о выборе существуют подпоследовательность
E1 = {Zn1(s), Zn2 (s), ...,Znk(s), ...},
последовательности Е и функция z*(s) из множества M1, z*(s) ÎL2, такие, что
всюду, кроме, может быть, счетного множества точек разрыва функции z*(s). Из поточечной сходимости подпоследовательности Е1 к функции z*(s) всюду, кроме, может быть, счетного множества точек, следует, какизвестно, сходимость подпоследовательности E1 к функции z*(s) по метрике L2.
Таким образом, в качестве приближенного решения на множестве М1 уравнения (2; 1,1) с приближенно известной правой частью u1ÎАМ1 можно брать точное решение этого уравнения с правой частью u=u1 . Эта последняя задача эквивалентна задаче нахождения на множествеM1 функции, минимизирующей функционал
N[z,u1]=|| A1z – u1 ||2L2 .
Пусть rU(uT, u1)<= d. Тогда, очевидно, в качестве приближенного решения уравнения (2; 1,1) можно брать функцию zd, для которой
|| A1zd – u1 ||2L2<= d2 . (2;1,2)
Если заменить интегральный оператор A1z интегральной суммой на фиксированной сетке с n узлами и обозначить значения искомой функции в узловых точках через zi , то задача построения приближенного решения уравнения (2; 1,1) сведется к задаче нахождения конечномерного вектора, минимизирующего функционалN[z,и1] и удовлетворяющего неравенству (2; 1,2).
В ряде других случаев компактные классы корректности можно указать эффективно, что дает возможность строить устойчивые приближенные решения.
2.1.4. В силу погрешности исходных данных элемент и может не принадлежать множествуAM. В этих условиях уравнение (2; 0,1) не имеет решения (классического) и возникает вопрос: что надо понимать под приближенным решением уравнения (2; 0,1)?
В этом случае вводится понятие квазирешения и метод подбора при условии компактности множества М позволяет найти приближение к квазирешению. В следующемпараграфе вопрос о квазирешении рассматривается подробнее.
2.2. Квазирешения
2.2.1. Пусть оператор А в уравнении (2; 0,1) — вполне непрерывный. Построение устойчивого к малым изменениям правой части и приближенного решения уравнения (2; 0,1) по формуле
z=A-1u (2; 2,1)
возможно в тех случаях, как отмечалось в 2.1. , когда решение ищется на компакте МÌF и правая часть уравнения принадлежит множеству N =AM.