Обычно не существует эффективных критериев, позволяющих установить принадлежность элемента и множеству N. Это приходится предполагать известным априори. В практических задачах часто вместо точного значения правой части иT нам известно ее приближенное значение u1, которое может не принадлежать множеству N=AM. В этих случаях нельзя строить приближенное решение уравнения (2; 0,1) по формуле (2; 2,1), так как символ А-1u может не иметь смысла.
2.2.2. Стремление устранить затруднения, связанные с отсутствием решения уравнения (2; 0,1) при неточной правой части, привело В. К. Иванова к понятию квазирешения уравнения (2; 0,1) — обобщению понятия решения этого уравнения.
Элемент z1ÎМ, минимизирующий при данном и функционалrU(Az1,и) на множестве М, называется квазирешением уравнения (2; 0,1) на М,
Если М — компакт, то квазирешение, очевидно, существует для любого иÎU и если, кроме того, иÎAM, то квазирешение z1 совпадает с обычным (точным) решением уравнения (2; 0,1). Квазирешение может быть и не одно. В этом случае под квазирешенпем будем разуметь любой элемент из множества квазирешенийD.
Можно указать достаточные условия, при которых квазирешение единственно и непрерывно зависит от правой части и.
Напомним определение. Пусть элемент у и множество Q принадлежат пространству U. Элементq множестваQ называется проекцией элемента у на множество Q, q=Ру, если выполняется равенство
где |
Теорема 1.Если уравнение Аz=u может иметь на компакте М не болееодного решения и проекция каждого элемента uÎU на множество N =AM единственна, то квазирешение уравнения (2; 0,1) единственно и непрерывно зависит от правой части u.
Доказательство. Пусть z1 — квазирешение и и1=Аz1. Очевидно, и1 есть проекция элемента u на множество N =AM. По условию теоремы она определяется однозначно. Отсюда, в силу взаимной однозначности отображения множества М на множествоN, следует единственность квазирешения z1.
Очевидно, что z1 = А-1u=А-1Ри. Согласно лемме о непрерывности обратного отображения компакта (см. предыдущий параграф) оператор А-1 непрерывен на N. Оператор проектирования Р непрерывен на U. Поэтому А-1P— непрерывный на U оператор и, следовательно, квазирешение z1 непрерывно зависит от правой части и.
Таким образом, при переходе к квазирешению восстанавливаются все условия корректности, т. е. задача нахождения квазирешения уравнения (2; 0,1) на компакте М является корректно поставленной.
Если условие единственности решения уравнения (2; 0,1) не выполнено, то квазирешения образуют некоторое множествоD элементов компакта М. В этом случае без упомянутых в теореме 1 ограничений на множество N имеет место непрерывная зависимость множества квазирешений D от и в смысле непрерывности многозначных отображений. Для случая, когда уравнение (2; 0,1) линейно, легко получить более общие результаты, содержащиеся в следующей теореме .
Теорема 2.Пусть уравнение (2; 0,1) линейно, однородное уравнениеAz=0имеет только нулевое решение, множество М выпукло, а всякая сфера в пространстве U строго выпукла. Тогда квазирешение уравнения (2; 0,1) на компакте М единственно и непрерывно зависит от правой части и.
Доказательство. Пусть z1 — квазирешение и u1=Az1. Так как множество М выпукло, то в силу линейности оператора А множество N=AM также выпукло. Очевидно, что и1 есть проекция элемента и на множество N. В силу того, что сфера в пространстве U по условию теоремы строго выпукла, проекция и определяется однозначно. Далее доказательство завершается, как в теореме 1.
2.2.3. ПустьF и U — гильбертовы пространства, МÎSR — шар (|| z ||<=R ) в пространстве F и А — вполне непрерывный линейный оператор.
В этом случае квазирешение уравнения (2; 0,1) можно представить в виде ряда по собственным элементам (функциям, векторам) jn оператора А*А, где А* — оператор, сопряженный оператору А.
Известно, что А*А — самосопряженный положительный вполне непрерывный оператор из F в F. Пусть l1>=l2>=…>=ln>=… — полная система его собственных значений, a j1, j2,…, jn,…—отвечающая им полная ортонормированная система его собственных элементов (функций, векторов). Элемент А*и можно представить в виде ряда
(2;2,2)В этих условиях справедлива
Теорема 3.Квазирешение уравнения (2, 0,1) намножествеSRвыражается формулами:
(2;2,3)если
(2;2,4)и
если
(2;2,5)Здесьb —корень уравнения
(2;2,6)Доказательство. Квазирсшение минимизирует функционал
rU2 (Az,u) == (Az —u, Az — u) (2;2,7)
(где (v,w ) — скалярное произведение элементовv иw из U), уравнение Эйлера для которого имеет вид
A*Az=A*u. (2;2,8)
Решение этого уравнения будем искать в виде ряда по системе {jn}:
(2;2,9)Подставляя этот ряд в уравнение (2; 2,8) и используя разложение (2;2,2), находим сn=bn/ln. Следовательно, неравенство (2; 2,4) означает, что ||z||<R и речь идет о нахождении безусловного экстремума функционала (2; 2,7). Ряд (2; 2,3) и будет решением задачи.
Если же выполняется неравенство (2; 2,5), то это означает, что ||z||>=R и надо решать задачу на условные экстремум функционала (2; 2,7) при условии, что || z ||2 =R2. Методом неопределенных множителей Лагранжа эта задача сводится к нахождению безусловного экстремума функционала
(Аz-u, Аz-u) +b (z, z),
а последняя — к решению отвечающего ему уравнения ЭйлераA*Az+bz=А*и. Подставляя сюда z в виде ряда (2; 2,9) и используя разложение (2; 2,2), находим
Параметр b определяем из условия || z ||2 =R2, которое эквивалентно (2; 2,6).
2.3. Приближенное нахождение квазирешений
В предыдущем параграфемы видели, что нахождение квазирешения связано с нахождением элемента в бесконечномерном пространстве. Для приближенного нахождения квазирешения естественно переходить к конечномерному пространству. Можно указать достаточно общий подход к приближенному нахождению квазирешений уравнения (2; 0,1) , в котором А—вполне непрерывный оператор.
Будем полагать, что выполнены указанные в 2.2. достаточные условия существования единственного квазирешения на заданном множестве М, т. е. полагаем, что множество М — выпуклый компакт и сфера в пространстве U строго выпукла. Пусть
M1 Ì M2 Ì...Ì Mn Ì...
— возрастающая цепочка компактных замкнутых множеств Мn такая, что замыкание их объединения
совпадает с М. Квазирешение уравнения (2; 0,1) существует на каждом множестве Мn . Но оно может быть не единственным. Обозначим через Тn совокупность всех квазирешений на множестве Мn .Покажем, что в качестве приближения к квазирешению z1 на множестве М можно брать любой элемент z1n из Тn . При этом
Пусть Nn = АМn и Вn — множество проекций элемента и на множествоNn . Очевидно, что Вn =АТn и N1 Í N2 Í …Í Nn; тогда
rU(u,N1)>= …>=rU (u,Nn)>=… rU (u,N)= rU (u,Az1) .(2;3,1)
Так как множество
всюду плотно на N, тодлявсякого e >0 найдется такое число n0(e), что для всех п >n0(e)rU(u,Nn)<rU(u,N)+e (2; 3,2)
Из (2; 3,1) и (2; 3,2) следует, что
(2;3,3)Посколькуто |
(2;3,4)
Каждое множествоВn есть компакт, так как оно является замкнутым подмножеством компактаNn. ПоэтомувВnнайдется такой элемент уn , что
rU(yn ,u) = inf rU(y,u)
yÎBn
Последовательность {yn} имеет хотя бы одну предельную точку, принадлежащуюN, так как N — компакт. Пусть у0 — какая-нибудь предельная точка множества {yn} и {уnk} — подпоследовательность, сходящаяся к y0 , т. е.