Пусть элементы zTÎF и uT ÎU связаны соотношением AzT = uT.
Определение 1. Оператор R(и, d), действующий из пространства U в пространство F, называется регуля-ризирующим для уравнения Az = и (относительно элемента uT), если он обладает свойствами:
1) существует такое числоd1 > 0, что оператор R(u,d) определен для всякого d, 0<=d<=d1, и любого udÎU такого, что
rU(ud,uT)<= d;
2) для всякого e > 0 существует d0=d0(e, ud)<=d1 такое, что из неравенства
rU(ud,uT)<= d<= d0;
следует неравенство
rF(zd,zT)<= e,
где
zd=R(ud,d).
Здесь не предполагается, вообще говоря, однозначность оператораR(u,d). Через zd обозначается произвольныйэлемент из множества {R(ud,d)} значений оператора R(ud,d).
3.1.2. В ряде случаев целесообразнее пользоваться другим определением регуляризирующего оператора (P.O.).
Определение 2. Оператор R(u, a), зависящий от параметра a и действующий из U в F, называется регуляризирующим для уравнения Az=и (относительно элемента uT), если он обладает свойствами:
1) существуют такие числаd1>0, a1>0, что операторR(u, a) определен для всякого a, принадлежащего промежутку (0, a1), и любого uÎU, для которого
rU(u,uT)<=d1;
2) существует такой функционал a=a(u, d), определенный на множестве Ud1º{u; r(u,uT)<= d1} элементов иÎU, что для любого e > 0 найдется число d(e)<=d1 такое, что если u1ÎU и rU(u1,uT)<= d<= d(e), то
rF(za,zT)<= e , где
za=R(u1, a(u1,d)).
В этом определении не предполагается однозначность оператора R(u1, a(u1,d)). Следует отметить, что при a=d получаем определение 1 .
3.1.3. Если rU(ud,uT)<= d, то известно, что в качестве приближенного решения уравнения (3; 0,1) с приближенно известной правой частью ud можно брать элемент za=R(d, a), полученный с помощью регуляризирующего оператора R(u, a ), где a=a(ud)=a1(d) согласовано с погрешностью исходных данных ud. Это решение называется регуляризованным решением уравнения (3; 0,1). Числовой параметр aназывается параметром регуляризации. Очевидно, что всякий регуляризирующий оператор вместе с выбором параметра регуляризации a, согласованного с погрешностью исходных данных ud,a=a(ud), определяет устойчивый к малым изменениям правой части и метод построения приближенных решений уравнения (3;0,1). Если известно, что rU(ud,uT)<= d, то согласно определению регуляризирующего оператора можно так выбрать значение параметра регуляризации a=a(ud) ,
что при d-0 регуляризованное решение R(ud,a(ud)) стремится (в метрике F) к искомому точному решению zT, т. е.rF(zT,za(ud)). Это и оправдывает предложение брать в качестве приближенного решения уравнения (3; 0,1) регуляризованное решение.
Таким образом, задача нахождения приближенного решения уравнения (3; 0,1), устойчивого к малым изменениям правой части, сводится:
а) к нахождению регуляризирующих операторов;
б) к определению параметра регуляризации aпо дополнительной информации о задаче, например, по величине погрешности, с которой задается правая часть ud.
Описанный метод построения приближенных решений называется методом регуляризации.
3.2. О решении вырожденных и плохо обусловленных систем линейных алгебраических уравнений
3.2.1. Известно, с какими трудностями связано решение так называемых плохо обусловленных систем линейных алгебраических уравнений: малым изменениям правых частей таких систем могут отвечать большие (выходящие за допустимые пределы) изменения решения.
Рассмотрим систему уравнений
Аz=u, (3; 2,1)
где А — матрица с элементами aij, А ={aij}, z — искомый вектор с координатами zj ,z={zj}, и — известный вектор с координатами иi ,u= {ui}, i, j =1, 2, ..., п.Система (3; 2,1) называется вырожденной, если определитель системы равен нулю, detA = 0. В этом случае матрица А имеет равные нулю собственные значения. У плохо обусловленных систем такого вида матрица А имеет близкие к нулю собственные значения.
Если вычисления производятся с конечной точностью, то в ряде случаев не представляется возможным установить, является ли заданная система уравнений вырожденной или плохо обусловленной. Таким образом, плохо обусловленные и вырожденные системы могут быть неразличимыми в рамках заданной точности. Очевидно, такая ситуация имеет место в случаях, когда матрица А имеет достаточно близкие к нулю собственные значения.
В практических задачах часто правая часть и и элементы матрицы А, т. е. коэффициенты системы (3; 2,1), известны приближенно. В этих случаях вместо системы (3;2,1) мы имеем дело с некоторой другой системой Az=и такой, что ||A-A||<=h, ||u-u||<= d, где смысл норм обычно определяется характером задачи. Имея
вместо матрицы А матрицу A, мы тем более не можем высказать определенного суждения о вырожденности или невырожденности системы (3; 2,1).
В этих случаях о точной системе Аz=u, решение которой надо определить, нам известно лишь то, что для матрицы А и правой части и выполняются неравенства
||A-A||<=h, ||u-u||<= d. Но систем с такими исходными данными (А, и) бесконечно много, и в рамках известного нам уровня погрешности они неразличимы. Поскольку вместо точной системы (3; 2,1) мы имеем приближенную систему Аz= и, то речь может идти лишь о нахождении приближенного решения. Но приближенная система Аz=и может быть неразрешимой. Возникает вопрос:
что надо понимать под приближенным решением системы (3; 2,1) в описанной ситуации?
Среди «возможных точных систем» могут быть и вырожденные. Если они разрешимы, то имеют бесконечно много решений. О приближенном нахождении какого из них должна идти речь?
Таким образом, в большом числе случаев мы должны рассматривать целый класс неразличимых между собой (в рамках заданного уровня погрешности) систем уравнений, среди которых могут быть и вырожденные, и неразрешимые. Методы построения приближенных решений систем этого класса должны быть одними и теми же, общими. Эти решения должны быть устойчивыми к малым изменениям исходных данных (3; 2,1).
В основе построения таких методов лежит идея «отбора». Отбор можно осуществлять с помощью специальных, заранее задаваемых функционалов W[ z ] , входящих в постановку задачи.
Неотрицательный функционал W[ z ] , определенный на всюду плотном в F подмножестве F1множества F, называется стабилизирующим функционалом, если:
а) элемент zTпринадлежит его области определения;
б) для всякого числа d>0 множество F1,dэлементов z из F1, для которых
W[ z ]<=d, компактно на F.
3.2.2. Итак, рассмотрим произвольную систему линейных алгебраических уравнений (короче — СЛАУ)
Аz =u, (3; 2,2)
в которой z и u—векторы, z=(z1, z2, ...,zn) ÎRn, и=(u1,u2, ...,un) ÎRm, А—матрица с элементами aij, А = {aij}, где j =1, 2, ..., n; i= 1, 2, ..., т, и число п не обязано быть равным числу т.
Эта система может быть однозначно разрешимой, вырожденной (и иметь бесконечно много решений) и неразрешимой.
Псевдорешением системы (3; 2,2) называют вектор z, минимизирующий невязку || Az – u || на всем пространстве Rn. Система (3; 2,2) может иметь не одно псевдорешение. Пусть FA есть совокупность всех ее псевдорешений и z1 — некоторый фиксированный вектор изRn, определяемый обычно постановкой задачи.
Нормальным относительно вектораz1 решением системы (3;2,2) будем называть псевдорешение z0 с минимальной нормой || z – z1 ||, т. е. такое, что
|| z0 – z1 || =
Здесь
. В дальнейшем для простоты записи будем считать z1= 0 и нормальное относительно вектора z1=0 решение называть просто нормальным решением.Для любой системы вида (3; 2,2) нормальное решение существует и единственно.
Замечание 1. Нормальное решение z° системы (3;2,2) можно определить также как псевдорешение, минимизирующее заданную положительно определенную квадратичную форму относительно координат вектора z—z1. Все излагаемые ниже результаты остаются при этом справедливыми.
Замечание 2. Пусть ранг матрицы А вырожденной системы (3; 2,1) равен r <n и zr+1,zr+2, … , zn— базис линейного пространства NA, состоящего из элементов z, для которых Аz=0,NA = {z; Аz= 0}. Решение z° системы (3; 2,1), удовлетворяющее n—r условиям ортогональности
(z0 – z1, zS)= 0, S= r + 1, r + 2, .. ,n, (3; 2,3)
определяется однозначно и совпадает с нормальным решением.
3.2.3. Нетрудно видеть, что задача нахождения нормального решения системы (3; 2,2) является некорректно поставленной. В самом деле, пусть А — симметричная матрица. Если она невырожденная, то ортогональным преобразованием