Смекни!
smekni.com

Методы решения некорректно поставленных задач (стр. 6 из 7)

z = Vz*, u = Vu*

ее можно привести к диагональному виду и преобразо­ванная система будет иметь вид

lizi*=ui* , i= 1, 2,. ..,п,

где li — собственные значения матрицы А.

Если симметричная матрица А — невырожденнаяи имеет ранг r, то n – r ее собственных значений равны нулю. Пусть

li¹0 для i=1, 2, ..., r;

и

li=0 для i=r+1,r+2, …, n.

Полагаем, что система (3; 2,2) разрешима. При этом ui*= 0 для i =r + 1, ..., n.

Пусть «исходные данные» системы и и) заданы с погрешностью, т. е. вместо А и и заданы их прибли­жения А и u:

|| A – A ||<=h, ||u – u||<=d. При этом

(3;2,4)

Пусть li собственные значения матрицы А. Извест­но, что они непрерывно зависят от А в норме (3; 2,4). Следовательно, собственные значения lr+1 , lr+2, …,lnмогут быть сколь угодно малыми при достаточно малом h.

Если они не равны нулю, то

zi*=

.

Таким образом, найдутся возмущения системы в пре­делах любой достаточно малой погрешности А и и, для которых некоторые zi* будут принимать любые наперед заданные значения. Это означает, что задача нахожде­ния нормального решения системы (3; 2,2) является неустойчивой.

Ниже дается описание метода нахождения нормального решения системы (3; 2,2), устойчивого к малым (в норме (3; 2,4)) возму­щениям правой части и, основанного на методе регуляризации.

3.3. Метод регуляризации нахождения нормального решения

3.3.1. Пусть z° есть нормальное решение системы

Аz = и. (3; 3,1)

Для простоты будем полагать, что прибли­женной может быть лишь правая часть, а оператор (матрица) А — точный.

Итак, пусть вместо и мы имеем вектор и, || и — и ||<=d ;т. е. вместо системы (3;3,1) имеем систему


(3; 3,2)

Аz = u.

Требуется найти приближение zd к нормальному реше­нию системы (3;3,1), т. е. к вектору z° такое, что zd-z° при d-0. Отметим, что векторы u и u (один из них или оба) могут не удовлетворять классическому ус­ловию разрешимости.

Поскольку система (3; 3,1) может быть неразреши­мой, то inf ||Az-u|| = m >=0, где inf берется по всем векторам zÎ Rn.

Естественно искать приближения zd в классе Qd век­торов z, сопоставимых по точности с исходными данны­ми, т. е. таких, что || Az – u ||<=m+d. Но поскольку вместо вектора u мы имеем вектор u, то мы можем найти лишь

m=inf || Az – u ||.

zÎ Rn

Отметим, что из очевидных неравенств

||Az – u ||<=||Az – u || + || u – u || ,

||Az – u ||<= || Az – u || + ||u – u ||

следуют оценки m<=m+d, m<=m+d, приводящие к не­равенству | m — m|<=d. Поэтому будем искать прибли­жение zd к нормальному решению z° в классе Qd векто­ров z, для которых ||Аz — и|| <=m+2d. Отметим, что если имеется информация о разрешимости системы (3;3,1), то m = 0 ив качестве класса Qd можно брать класс векторов z, для которых ||Аz и|| <=d. Класс Qd есть класс формально возможных приближенных решений.

Но нельзя в качестве zd брать произвольный вектор из класса Qd, так как такое «приближение» будет неустойчивым к малым изменениям правой части уравнения (3;3,2). Необходим принцип отбора. Он естественным образом вытекает из постановки задачи. В самом деле согласно определению нормального решения искомое ре­шение z° должно быть псевдорешением с минимальной нормой. Поэтому в качестве приближения к z° естествен­но брать вектор zd из Qd, минимизирующий функционал

W[ z ] = ||z||2 на множестве Qd.

Таким образом, задача сводится к минимизации функ­ционала W[ z ] = ||z||2 на множестве Qd векторов z, для которых выполняется условие || Аzu|| <=m+2d.

3.3.2. Пусть zd — вектор из Qd, на котором функционал ||z||2 достигает минимума на множестве Qd. Его можно рассматривать как результат применения к правой части u уравнения (3; 3,2) некоторого оператора R1(u, d), зависящего от параметра d. Справедлива

Теорема 1. Оператор R1(u, d) обладает следующи­ми свойствами:

1) он определен для всякогоuÎRmи любогоd > 0;

2) приd-0 zd== R1(u, d) стремится к нормальному решениюz° уравнения Аz=u, т. е. он является регуляризирующим для уравнения Аz=u .

3.3.3. Пусть zd — вектор, на котором функционал W[ z ] = ||z||2 достигает минимума на множестве Qd. Легко ви­деть из наглядных геометрических представлений, что вектор zd лежит на границе множестваQd,т.е. ||Azd- u ||=m+2d=d1.

Это следует непосредственно также из того, что функционал W[ z ] = ||z||2 является сстабилизирующим и квазимонотонным. Стабилизирующий функционал W[ z ] называется квазимонотонным , если каков бы ни был элемент z из F1 , не принадлежащий множеству M0 , в любой его окрестности найдется элемент z1из F1, для которого W[ z1 ]< W[ z ], т.е. если функционал не имеет локальных минимумов на множестве F1&bsol; M0.

Задачу нахождения вектора zd можно поставить так:среди векторов z, удовлетворяющих условию ||Az – u ||=m+2d, найти вектор zd с минимальной нормой, т. е. минимизирующий функционал W[ z ]=||z||2.

Последнюю задачу можно решать методом Лагранжа, т. е. в качестве zdбрать вектор za, минимизирующий функционал

Мa [z, u] = ||Az - u ||2+ a||z||2,a>0,

с параметром a, определяемым по невязке, т. е. из ус­ловия ||Аza— u||=d1. При этом параметр aопределяется однозначно .

3.3.4. Поскольку Мa [z, u] квадратичный функционал, то для любых u ÎRm и a> 0 существует лишь один минимизирующий его вектор za. В самом деле, допустим,

что существуют два вектора za и za, минимизирующие его. Рассмотрим векторы z, расположенные на прямой (пространства Rn), соединяющей za и za:

z = za+ b(za-za).

Функционал Мa [z, u] на элементах этой прямой есть неотрицательная квадратичная функция от b. Следова­тельно, она не может достигать наименьшего значения при двух различных значениях b: b = 0 (z=za) иb=1 (z=za).

Компоненты zja вектора za являются решением си­стемы линейных алгебраических уравнений

получающихся из условий минимума функционала Мa [z, u]:

Здесь

Компоненты zja могут быть определены и с помощью какого-нибудь другого алгоритма минимизации функцио­налаМa [z, u].

Вектор za можно рассматривать как результат приме­нения к u некоторого оператора za=R(u, a), завися­щего от параметра a.

Покажем, что оператор R0(u, a) является регуляризирующим для системы (3;3,1), т. е. обладает свойствами 1) и 2) определения 2 (см. 3.1.2.). В п. 3.3.2. было сказано, что он определен для всяких u ÎRm и a> О и, следовательно, обладает свойством 1). Теперь пока­жем справедливость свойства 2), т. е. существование таких функций a=a(d) , что векторы za(d) = R0(u,a(d)) сходятся к нормальному решению z° системы (3; 3,1) при d-0. Это непосредственно следует из приводимой ниже теоремы 2.

Теорема 2( Тихонова). Пусть z° есть нормальное решение си­стемы Az=u и вместо вектора u мы имеем вектор u такой, что ||u—u||<=d. Пусть, далее,b1(d)и b2(d) — какие-либо непрерывные на [0, d2] и положительные на (0, d2] функции, монотонно стремящиеся к нулю при d- 0 и такие, что

Тогда для любой .положительной на (0, d2] функции a=a(d) , удовлетворяющей условиям

векторы za(d) = R0(u,a(d)) сходятся к нормальному ре­шению z0 системы Az = u при d-0, т. е.

Примечание. Доказательства теорем в данном разделе опущены, т.к. основной теоретической частью работы является раздел «Метод Подбора. Квазирешения». Метод Тихонова описан из-за использования его в численном эксперименте.

ЗАКЛЮЧЕНИЕ

Для реализации численного примера был выбран метод Тихонова решения плохо обусловленных СЛАУ. В качестве исходной была взята СЛАУ Az=u, имеющая в матричной записи вид:

Определитель матрицы коэффициентов этой системы близок к нулю – он равен 0.000125. Попробуем решить эту систему с помощью обратной матрицы:

z=A-1u

Получим z1=316

z2=-990

z3=832

Теперь предположим, что правая часть нам известна приближенно, с погрешностью 0.1 Изменим, к примеру, третий элемент вектора-столбца с 1 на 1.1 :

Попробуем решить новую систему также с помощью обратного оператора. Мы получаем другой результат:

z1=348

z2=-1090

z3=916.

Мы видим, что малому изменению правой части данной системы отвечают весьма значительные изменения решения. Очевидно, эта система – плохо обусловленная, и здесь не может идти речи о нахождении решения близкого к точному с помощью обратного оператора.

Будем искать решение методом Тихонова. В теоретической части было показано, что целесообразно использовать регуляризирующий оператор следующего вида: (aE + ATA)za=ATud , где E – единичная матрица, za -- приближенное нормальное решение, AT– транспонированная исходная матрица, a -- параметр регуляризации,