Смекни!
smekni.com

Методы решения систем линейных неравенств (стр. 2 из 2)

Принцип двойственности

В реальной практике встречаются задачи в которых число неизвестных больше числа ограничений. Такие задачи решать в их первозданном виде довольно трудно, но, применяя принцип двойственности можно заметно упростить решение, поскольку в двойственной задаче будет, наоборот, больше ограничений, чем переменных.

Для того чтобы показать, как принцип двойственности может упростить процесс решения приведем следующий пример:

max(f)-? min(φ)-?

Из данного примера легко просматривается взаимосвязь между исходной и двойственной задачами.

Введя в рассмотрение следующие элементы:

Эту связь можно обозначить следующим образом:

max(f)-? min(φ)-?

В двойственной задаче всего 2 переменных. Её можно легко решить графическим методом и, используя вторую теорему двойственности, найти решение исходной.

Пропустим процесс решения двойственной ЗЛП, записав только результаты:

Y1=2 Y2=4 min(φ)=150

Т.к max(f)=min(φ), решение исходной задачи уже известно. Остаётся только найти значения X1, X2, X3, при которых это значение достигается. Здесь мы применим вторую теорему двойственности, которая устанавливает следующее соответствие:

В нашем примере получается следующая вполне тривиальная система линейных уравнений:

Решение данной системы легко находится методом Гаусса и окончательный ответ таков:

Функция fдостигает максимума при X1=0, X=5, X3=10 и max(f)=150

Список использованной литературы

  1. Учебник: «Математика в экономике»; А.С. Солодовников, В.А. Бабайцев, А.В. Браилов: Финансы и статистика 1999г.
  2. Сборник задач по курсу математики; под редакцией А.С. Солодовникова и А.В. Браилова; ФА 2001г.
  3. «Линейные неравенства»; С.Н. Черников; Наука 1968
  4. «Краткий очерк развития математики»; Д.Я. Стройк; Наука 1984.

[1]Вектор нормали имеет координаты (С1;С2), где C1 и C2 коэффициенты при неизвестных в целевой функции f=C1◦X1+C2◦X2+C0.

[2]при нахождении минимума выбираем положительные коэффициенты

[3]Если положительных элементов не оказалось то данная ЗЛП не имеет решения, т.е max(f)=+∞ (при задаче на нахождение максимума) или min(f)=- ∞ (нахождение минимума)

[4]Если есть несколько одинаковых отношений можно выбрать любую строку