Министерство образования Российской Федерации
Магнитогорский государственный технический университет им. Г.И. Носова
РЕФЕРАТ
на тему:
“МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ В ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЯХ”
Выполнил: студент гр. МХТ-02
Казаков Василий Васильевич
Проверила:
Абрамова Ирина Михайловна
Магнитогорск 2003
Содержание
1) Гармонические колебания
2) Затухающие колебания
3) Вынужденные колебания без учета сопротивления среды
4) Вынужденные колебания с учетом сопротивления среды
Колебаниями называются процессы, которые характеризуются определенной повторяемостью во времени. Колебательные процессы широко распространены в природе и технике, например качания маятника часов, переменный электрический ток и т.д. При колебательном движении маятника изменяется координата центра масс, в случае переменного тока колеблются напряжение и сила тока. Физическая природа колебаний может быть разной, однако различные колебательные процессы описываются одинаковыми характеристиками и одинаковыми уравнениями. Рассмотрим механические колебания.
Гармонические колебания.
Гармоническими колебаниями называются колебания, при которых изменяющаяся величина изменяется по закону синуса (косинуса).
Пусть груз весом Р подвешен на вертикальной пружине, длина которой в естественном состоянии равна
Направим ось Ох вниз по вертикальной прямой, проходящей через точку подвеса груза. Начало координат О выберем в положении равновесии груз, то есть в точке, в которой вес груза уравновешивается силой натяжения пружины.
Дифференциальное уравнение получим из второго закона Ньютона: F=ma, где m=P/g—масса груза а—ускорение движения и F—равнодей-ствующая приложенных к грузу сил. В данном случае равнодействующая слагается из силы натяжения пружины и силы тяжести.
По закону Гука сила натяжения пружины пропорциональна её удлинению: Fупр=-сl, где с – постоянный коэффициент пропорциональности называемый жесткостью пружины.
Так как в положении равновесия сила равновесия сила натяжения пружины уравновешивается весом тела, то P= сlст. Подставим в дифференциальное уравнение выражение Р и заменим l-lст через х, получится уравнение в виде:
или, обозначив с/mчерез k2,
Полученное уравнение определяет так называемые свободные колебания груза. Оно называется уравнением гармонического осциллятора. Это линейное дифференциальное уравнение второго порядка с постоянными коэффициентами. Его характеристическое уравнение:
имеет мнимые корни
Для выяснения физического смысла решения удобнее привести его к другой форме, введя новые произвольные постоянные. Умножив и разделив на
Если положить
то
График гармонических колебаний имеет вид:
Таким образом, груз совершает гармонические колебания около положения равновесия.
Величину А называют амплитудойколебания, а аргумент
Скорость движения груза получается дифференцированием решения по t:
Для определения амплитуды и начальной фазы необходимо задать начальные условия. Пусть, например, в начальный момент t = 0 положение груза x=x0и скорость u=u0. Тогда
Из формул для амплитуды и начальной фазы видно, что в отличие от частоты и периода собственных колебаний они зависят от начального состояния системы. При отсутствии начальной скорости (u0=0) амплитуда А=х0,а начальная фаза a=p/2 и, таким образом,
Затухающие колебания.
Затухающими колебаниями называются колебания, амплитуды которых из-за потерь энергии реальной колебательной системой с течением времени уменьшают-ся. Найдем закон движения груза в условиях предыдущей задачи, но с учетом сопротивления воздуха, которое пропорционально скорости движения.
Решение
К силам, действующим на груз, прибавляется здесь сила сопротивления воздуха
или если положить
Это уравнение также является линейным однородным уравнением второго порядка с постоянными коэффициентами. Его характеристическое уравнение:
имеет корни
Характер движения целиком определяется этими корнями. Возможны три различных случая. Рассмотрим сначала случай, когда
или, преобразовав, умножая и деля на
положим, что
тогда
График зависимости отклонения от положения равновесия от времени имеет вид:
Если заданы начальные условия: