Смекни!
smekni.com

Минимизация функций алгебры логики (стр. 7 из 7)

y0

y7


Несложно убедиться, что такой подход не является оптимальным, поэтому рассмотрим следующие моменты синтеза схем:

1) Классический основан на выделении простых импликант заданной системы функций, подобно тому, как это делается в методе минимизации Квайна-Мак-Класки, а затем ищется покрытие заданной функции этими импликантами.

При этом требуется:

1) найти простые импликанты заданной системы функций

2) выразить каждую функцию через простые импликанты

3) синтезировать схему, включающую только эти импликанты и связи между ними

Пример: синтезировать схему в базисе

, функции которой на выходе имеют следующий вид:

Решение: разобьем

на группы, соответствующие по количеству единиц:

y2

y1

Метод каскадов (1.8.5)

Этот метод основан на разложении ФАЛ на k переменных:

Где k

n

Эта формула попеременно применяется к заданной функции столько раз, чтобы получить простое логическое выражение, которое легко синтезировать.

.

.

.

и.т.д.

Построенная на основе этих выражений логическая схема на каждом этапе образует последний каскад искомой комбинационной схемы.