Нестандартный анализ возник в 1960 году,когда Абрахам Робинсон, специалист потеории моделей, понял, каким образом методы математической логики позволяют оправдать классиков математического анализа XVII и XVIII вв., поставив на строгую основу их рассуждения, использующие “бесконечно большие” и бесконечно малые величины. Таким образом, речь шла не о каких-то новых “нестандартных” методах, не имеющих ничего общего с традиционной математикой, а о развитии новых средств внутри стандартной (теоретико-множественной) математики.
Нестандартный анализ остался бы любопытным курьезом,если бы единственным его приложением было обоснование рассуждений классиков математического анализа. Он оказался полезным и при развитии новых математических теорий. Нестандартный анализ можно сравнить с мостом, переброшенным через реку. Постройка моста не расширяет доступной нам территории, но сокращает путь с одного берега на другой. Подобным образом нестандартный анализ делает доказательства многих теорем короче.
Однако, быть может, главное значение нестандартного анализа состоит в другом. Язык нестандартного анализа оказался удобным средством построения математических моделей физических явлений. Идеи и методы нестандартного анализа могут стать важной частью будущей физической картины мира. Во всяком случае уже сейчас многие специалисты по математической физике активно используют нестандартный анализ в своей работе.
Несколько примеров нестандартного анализа:
Пример 1. Вычислим производную функции
Если
Пример 2. Вычислим аналогичным способом производную функции
Пример 5. Построение неизмеримого множества. Каждое действительное число
Если примеры 1 и 2 хотя и могут шокировать нас наивной нестрогостью, но всё же в известной мере соответствуют интуиции, то пример 5 представляется просто-напросто абракадаброй.
Нестандартный анализ, однако, почти сплошь состоит из подобной абракадабры, имеющей в нём точный математический смысл. Он позволяет, в частности, с новой точки зрения посмотреть на многие рассуждения классиков математического анализа, кажущиеся нестрогими, но приводящие к успеху, и путём относительно небольших уточнений сделать их удовлетворяющими современным критериям строгости.
ЧТО ТАКОЕ БЕСКОНЕЧНО МАЛЫЕ ?
Один из наиболее принципиальных моментов нестандартного анализа состоит в том, что бесконечно малые рассматриваются не как переменные величины, а как величины постоянные. Достаточно раскрыть любой учебник физики, чтобы натолкнуться на бесконечно малые приращения, бесконечно малые объёмы и т. п. Все эти величины мыслятся, разумеется, не как переменные, а просто как очень маленькие, почти равные нулю.
Итак, речь будет идти о бесконечно малых числах. Какое число следует называть бесконечно малым? Предположим, что это положительное число
Более точное определение бесконечной малости числа
1<
Таким образом, если число