Рассмотрим последовательность вложенных друг в друга подгрупп; всякая такая последовательность
М: G=H0³H1³ … ³Hm=E,
содержащая G и E, называется матрёшкой подгрупп группы G. Допустим теперь, что в каждом члене Hi данной матрёшки М выделено по элементу аi, причем для каждого элемента х из Нi + 1 «сопряженный элемент» аi–1 xai снова лежит в Нi + 1 и каждый элемент у из Hiзаписывается в виде произведения некоторой степени аimна некоторый элемент из Нi + 1; тогда матрешка М называется полициклической.
Группой называется любое множество G, на котором задана двуместная алгебраическая операция, т.е. правило, сопоставляющее каждым двум элементам из G определенный третий элемент из G, причем выполняются следующие аксиомы:
а) операция ассоциативна, т.е. (аb)c=a(bc)
б) G содержит единичный элемент
в) для всякого а из G существует обратный элемент.
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ:
1. В. Чеботарев, «Основы теории Галуа» Москва, 1934.
2. А. Дальма, « Эварист Галуа. Революционер и математик» Москва, 1984.
3. Ван дер Варден, «Алгебра»
4. И.Н. Бронштейн, К.А. Семендяев, «Справочник по математике для инженеров и учащихся ВТУЗов» Москва, 1986.