Отсюда получаем, для схемы 1 и 2:
Pcx1= P3(t)* ( 1-(1-P1P4P5P6)(1- P2P7) ).
Pcx2= (1- P3(t))*( (1-(1- P1)(1- P2))*(1-(1-P4P5P6)(1- P7)) ).
И далее , вероятность безотказной работы:
Pc= Pcx1 + Pcx2.
Предполагаем, что время отказа элементов системы распределено по экспоненциальному закону.
Из соотношения
находимпри t=10, получаем:
P1= | 0,5 | λ1= | 0,0693 |
P2= | 0,6 | λ2= | 0,0510 |
P3= | 0,7 | λ3= | 0,0356 |
P4= | 0,8 | λ4= | 0,0223 |
P5= | 0,85 | λ5= | 0,0162 |
P6= | 0,9 | λ6= | 0,0105 |
P7= | 0,92 | λ7= | 0,0083 |
А время безотказной работы всей системы:
Подставляем полученные фрмулы в интеграл.
В результате расчетов мы получили следующее значение времени безотказной работы:
T0c = 8.4531+10-5.9067+12.8866+16.8634-7.7760-7.8989-
-9.2336+5.6306-7.3746+4.8804-8.8339+6.0901+6.1652+6.9493=
=30,895 ч.
Решение.
Произведем сравнение значений полученных в задании 2 показателей надежности Toc, Кгс и Pc(t) с приведенными требованиями
Toc = 160,619 ч<2000;
Кгс= 0,999152>0,99;
Pc(100)= 0,537<0.95;
Cравнивая их с требуемыми, видим, что кроме коэффициента готовности, показатели не обеспечены. Так как стоимость резерва времени меньше стоимости ненадежного элемента, применим временное резервирование. Для расчета показателей надежности используются следующие соотношения:
Используя данные соотношения, найдем такое t*,чтобы показатели надежности соответствовали норме.
t* ч | Toc(t*) ч | Pc(100) | Кгс |
1 | 1691,978651 | 0,999409 | 0,999919 |
0,5 | 199,6174595 | 0,997498 | 0,999317 |
0,75 | 405,2974417 | 0,998151 | 0,999664 |
0,625 | 258,3638926 | 0,997584 | 0,999473 |
1,5 | 60094,52894 | 0,999975 | 0,999998 |
1,25 | 9741,126251 | 0,999872 | 0,999986 |
1,1 | 3349,283294 | 0,999672 | 0,999959 |
1,05 | 2370,37751 | 0,999557 | 0,999942 |
1,02 | 1933,929442 | 0,999473 | 0,99993 |
1,03 | 2068,882229 | 0,999502 | 0,999934 |
1,025 | 2000,168795 | 0,999488 | 0,999932 |
Получаем, что при t*=1,025 ч. показатели надежности соответствуют норме. Продублируем последовательно все элементы цена которых меньше 100у.е.*t*= 102,5усл. ед.
Это будет элемент С3 . Дублируем их:
λ4c» 0.0047 1/ч.
Tв»253.25 ч.
Как видим при дублировании самого дешевого элемента мы не обеспечиваем требуемые показатели надежности.
Поэтому применим временное резервирование с параметром t*=1,025 ч.
В данной работе мы выполнили несколько показательных расчетов, таких как:
· вычисление показателей безотказности/восстанавливаемости системы,
· определение различных параметров восстанавливаемой системы для нагруженного резерва, состоящей из 3 средств,
· определили параметры надежности системы, содержащей узлы типа «треугольник»,
· а также применили различные виды резервирования (структурное и временное) и сравнили их эффективность на примере задачи 2.
В целом данная работа показывает основные принципы анализа надежности автоматизированных систем.
1. Методические указания к изучению курса «Прикладная теория надежности»/Сост.Рожков.- К.:КПИ, 1988.-48с.
2. Надежность АСУ: Учеб.пособие для ВУЗов /Под ред. Я.А.Хотагурова.-М.: Высш.шк., 1985.-168 с.
3. Конспект лекций по курсу «Теория надежности»