Величина наиболее крупных ошибок не превосходит некоторого определенного предела, зависящего от точности измерения. Самую большую ошибку в ряду равноточных измерений называют предельной ошибкой;
4. Частные от деления алгебраической суммы всех случайных ошибок на их общее близко к нулю, т.е.
.
На основе указанных свойств при учете некоторых допущений математически достаточно строго выводится закон распределения ошибок, описываемый следующей функцией:
,
где s - дисперсия измерений (см. ниже);
е - основание натуральных логарифмов;
х - истинная абсолютная ошибка измерений.
Иначе эту зависимость называют формулой случайных ошибок, формулой Гаусса. На рис.1 приведены кривые Гаусса с различной величиной s.
Рис. 1. Кривая случайных ошибок
Закон распределения случайных ошибок является основным в математической теории погрешностей. Иначе его называют нормальным законом распределения. Особое значение в пользу широкого использования закона Гаусса имеет следующее обстоятельство: если суммарная ошибка измерения появляется в результате совместного действия ряда причин, каждая их которых вносит малую долю в общую ошибку (т.е. нет доминирующих причин), то по какому бы закону не были распределены ошибки, вызываемые каждой из причин, результат их совместного действия приведет
к нормальному распределению ошибок. Эта закономерность является следствием так называемой центральной предельной теоремы Ляпунова и хорошо соотносится с введенным понятием случайной ошибки.
Наряду с нормальным законом распределения ошибок могут встречаться и другие.
1.5. Наиболее вероятное значение измеряемой величины
Допустим, что для определения истинного значения Х измеряемой величины было сделано n равноточных измерений с результатами а1, а2 .. .аn. Естественно, что ряд этих чисел будет больше Х, другие меньше Х и неясно, какое из этих чисел ближе всего подходит к Х.
Представим результаты измерений в виде очевидных равенств:
а1 = Х - Dх1; а2 = Х - Dх2; ... ; аn = Х - Dхn.
Естественно, что истинные абсолютные ошибки Dхi могут принимать как положительные, так и отрицательные значения.
Суммируя левые и правые стороны равенств получим
.
Поделим обе части равенства на число измерений n и получим
.
Величина является среднеарифметическим величины Х. Если число n достаточно велико ( при n®¥), то согласно четвертому свойству случайных ошибок
.
Это же видно и по кривой Гаусса (рис. 1), где всякой положительной погрешности соответствует равная ей отрицательная.
Из изложенного следует, что
Х = а при n ® ¥,
т.е. при бесконечном числе измерений истинное значение измеряемой величины равно среднеарифметическому значению результатов всех измерений. При ограниченном числе измерений истинное значение будет отличаться от среднеарифметического и необходимо оценить величину этого расхождения: Х = а ± Dх.
Следует еще раз подчеркнуть, что среднеарифметическое значение, принимаемое за истинное значение измеряемой величины, является наиболее вероятным значением. Среди значений аi могут оказаться значения, которые в действительности ближе к истинному значению.
Отклонение Dх вероятнейшего значения а от его истинного значения Х называют истинной абсолютной ошибкой.
1.6. Оценка точности измерений
Для ряда равноточных измерений а1, а2 ...аn определим его среднеарифметическое значение а и составим разности (а - а1), (а - а2), ..., (а - аn).
Каждую из этих разностей называют вероятнейшей ошибкой отдельного измерения (Vi). Вероятнейшие ошибки, как и истинные ошибки Dхi = (Х - аi), бывают положительные и отрицательные, нулевые. Рассмотрим т.е. алгебраическая сумма вероятнейших ошибок равна нулю при любом числе измерений. Истинные случайные ошибки таким свойством не обладают.
Вероятнейшие ошибки Vi лежат в основе математической обработки результатов измерений: именно по ним вычисляют предельную абсолютную ошибку Dаi среднеарифметического а и тем самым оценивают точность результата измерений.
Средняя истинная случайная ошибка (иначе - среднее отклонение отдельного измерения) определяется выражением (Dх1+Dх2+...+Dхn)/n.
Величина [(Dх1)2+(Dх2)2+...+(Dхn)2]/n представляет средний квадрат случайной ошибки или дисперсию S2 выборки (при ограниченном n) или генеральной совокупности s2 (при бесконечном n). Средняя квадратичная ошибка отдельного измерения S = является лучшим критерием точности, чем средняя случайная ошибка, т.к. не происходит компенсации положительных и отрицательных ошибок Dхi и сильнее учитывается действие крупных ошибок.
Поскольку истинное значение Х измеряемой величины неизвестно, то неизвестны и истинные случайные ошибки хi. Для определения средней квадратичной ошибки S используется положение теории случайных ошибок, что при большом числе измерений n справедливо равенство
.
Различный знаменатель объясняется тем, что величины хi являются независимыми, а из n величин Vi независимыми являются n-1, т.к. в величину Vi входит а, само определяемое из этих же n измерений.
Важно, что не зная самих истинных случайных ошибок удается вычислить среднюю квадратичную ошибку определенного измерения:
S = ±.
Оценим теперь погрешность результата всей серии эксперимента, т.е. определим величину Dх = Х - а.
Для этого проведем преобразование выражения
Sn2 =
=
= .
Если повторить серии по n измерений в каждой N ðàç, ìîæíî ïîëó÷ить средние значения а1, а2, ... , аN и погрешности результатов измерений
(Dх)1 = (Х - а1); (Dх)2 = (Х - а2); ... ; (Dх)N = (Х - аN)
и среднюю среднеквадратичную погрешность серии
Sa2 = .
При большом числе N S2a ® s2a
.
Усредняя выражение S2n по числу серий N, получаем
Sa2 = (Dx)2 = Sn2 - .
Учитывая что при большом n S2n ® s2 и S2 ® s2 получаем искомую
связь между дисперсиями всего опыта s2a и отдельного эксперимента [i1] s2
,
т.е. дисперсия s2a результата серии из n измерений в n раз меньше дисперсии отдельного измерения. При ограниченном числе n измерений приближенным выражением s2a будет S2a
.
Выражения s2a и S2a отражают фундаментальный закон возрастания точности при росте числа наблюдений. Из него следует, что желая повысить точность измерений в 2 раза мы должны сделать вместо одного - четыре измерения; чтобы повысить точность в 3 раза, нужно увеличить число измерений в 9 раз и т.д.
Понятие доверительного интервала и доверительной вероятности
Как установлено ранее, истинное значение измеряемой величины Х отличается от среднеарифметического a на некоторую величину Dx. На рис. 2 представлено расположение истинного значения Х и а, полученного из некоторых измерений а1, а2, а3.
Ясно, что случайные величины а1, а2, а3 обусловят случайный характер абсолютной погрешности Dx результата серии измерений, которая будет распределена по закону Гаусса:
.
Рис. 2. Взаимное расположение Х и а, полученных
из трех измерений а1, а2, а3
Тогда вместо выражения Х = а ± Dх можно записать а - Dх £ Х £ а + D.
Интервал (а - Dх; а + Dх), в который по определению попадает истинное значение X называют доверительным интервалом. Надежностью (уровнем значимости) результата серии измерений называется вероятность a того, что истинное значение X измеряемой величины попадет в доверительный интервал. Вероятность a выражается в долях единицы или процентах. Графически надежность отражается площадью под кривой нормального распределения в пределах доверительного интервала, отнесенной к общей площади. Выбор надежности определяется характером производимых измерений. Например, к деталям самолета предъявляются более жесткие требования, чем к лодочному мотору, а к последнему значительно больше, чем к ручной тачке. При обычных измерениях ограничиваются доверительной вероятностью 0,90 или 0,95. Для любой величины доверительного интервала (выраженного в долях s ) по формуле Гаусса может быть просчитана соответствующая доверительная вероятность. Эти вычисления проделаны и сведены в таблицу, имеющуюся практически во всей литературе по теории вероятности. На рис. 3 представлены значения надежности a при величине доверительного интервала ±s, ±2s, ±3s. Эти значения доверительной вероятности рекомендуется запомнить.
По рис. 3 видно, что величина абсолютной погрешности Dx может быть представлена в виде К×sа, где К некоторый численный коэффициент, зависящий от надежности a. Однако это справедливо лишь для большого (бесконечного) числа n. При малых n этим коэффициентом пользоваться нельзя, т.к. величина sа неизвестна. Для того, чтобы получить оценки границ доверительного интервала при малом n вводится новый коэффициент ta. Этот коэффициент предложен английским математиком и химиком В.С. Госсетом, публиковавшим свои работы под псевдонимом ² Стьюдент ².
Рис. 3. Значения надежности a при различных значениях Dx/s
И коэффициент ta назвали коэффициентом Стьюдента. Коэффициент Стьюдента отражает распределение случайной величины t = при различном n. При n®¥ ( практически при n ³ 20 ) распределение Стьюдента переходит в нормальное распределение. Значения коэффициента Стьюдента также приводятся практически во всей литературе по теории вероятности.
Зная величину ta можно определить величину абсолютной погрешности Dх = t×Sa . Следует отметить, что величина абсолютной погрешности еще не определяет точность измерений. Точность измерений характеризует относительная погрешность, равная отношению абсолютной погрешности Dx результата измерений к результату измерений а: ε = ± Dх / а. .