где
можно показать, что при каждом фиксированном масштабе jÎZ вейвлеты
{yj,k(x)=2-j/2y(2-jx-k)}kÎZ образуют ортонормальный базис пространства Wj.
Равенство (1.17) определяет пару квадратурных зеркальных фильтров (quadrature mirror filters, QMF)H и G, где
Выбранный фильтр Н полностью определяет функции j и y и, таким образом, многомасштабный анализ. Кроме того, в правильно построенных алгоритмах значения функций j и y почти никогда не вычисляются. Благодаря рекурсивному определению вейвлетного базиса, все операции проводятся с квадратурными зеркальными фильтрами H и G, даже если в них используются величины, связанные с j и y.
4. ОПЕРАТОРЫ
Сжатие операторов или, другими словами, представление их в разреженном виде в ортонормированном базисе непосредственно влияет на скорость вычислительных алгоритмов.
Нестандартная форма оператора Т с ядром K(x,y) достигается вычислением следующих выражений:
4.1 Оператор d/dxв вейвлетном базисе
Нестандартные формы некоторых часто используемых операторов могут быть вычислены явно. Построим нестандартную форму оператора d/dx. Матричные элементы
где
Кроме того, используя (1.8) и (1.19), имеем
Таким образом представление d/dxполностью определяется величинами
Предложение 4.1. 1. Если существует интеграл (4.11), тогда коэффициенты
где
2. Если
Замечание. Если М=1, тогда система (4.15)-(4.16) имеет единственное решение, но интеграл (4.11) может не быть абсолютно сходящимся. Для базиса Хаара (
Замечание 2. Заметим, что выражения (4.12) и (4.13) для
Для доказательства Предложения 4.1 можно обратиться к [2].
Для решения системы (4.15)-(4.16) можно также воспользоваться итерационным алгоритмом. Начать можно с
4.2 Оператор dn/dxnв вейвлетном базисе
Так же как и для оператора d/dx, нестандартная форма оператора dn/dxnполностью определяется своим отображением на подпространство V0, т.е. коэффициентами
если интеграл существует.
Предложение 4.2. 1. Если интеграл в выражении (4.18) существует, тогда коэффициенты
где
2. Пусть M≥ (n+1)/2, где М – число исчезающих моментов. Если интеграл в (4.18) существует, тогда система (4.19)-(4.20) имеет единственное решение с конечным числом нулевых коэффициентов
а для нечетных n
Замечание 3. Если M≥ (n+1)/2, тогда решение линейной системы в Предложении 2 может существовать, когда интеграл в (4.18) не является абсолютно сходящимся.
Интегральные уравнения второго рода
Линейное интегральное уравнение Фредгольма есть выражение вида