Смекни!
smekni.com

Операторы в вейвлетном базисе (стр. 1 из 3)

Белорусский государственный университет

Факультет прикладной математики и информатики

Кафедра математической физики

ГРОМОВА МАРИЯ МИХАЙЛОВНА

ОПРЕАТОРЫ В ВЕЙВЛЕТНОМ БАЗИСЕ

Курсовая работа студентки 4 курса

Научный руководитель:

Глушцов Анатолий Ильич

кафедры МФ

кандидат физ.-мат. наук

Минск 2004

СОДЕРЖАНИЕ

ВВЕДЕНИЕ………..………………………………………………………..3

1. МНОГОМАСШТАБНЫЙ АНАЛИЗ И ВЕЙВЛЕТЫ………………...5

2. БЫСТРОЕ ВЕЙВЛЕТ-ПРЕОБРАЗОВАНИЕ….……………………...9

3. ДВУМЕРНЫЕ ВЕЙВЛЕТЫ…………………………………………..12

4. МАТРИЧНЫЕ ОПЕРАЦИИ………………………………………….13

4.1. Матричное умножение………………………………………...13

4.2. Обращение матрицы…………………………………………...16

4.3. Вычисление экспоненты, синуса и косинуса от матрицы.….16

ЛИТЕРАТУРА……………………………………………………………18

ВВЕДЕНИЕ

Вейвлет-преобразование сигналов (wavelet transform), теория которого оформилась в начале 90-х годов, является не менее общим по областям своих применений, чем классическое преобразование Фурье. Принцип ортогонального разложения по компактным волнам состоит в возможности независимого анализа функции на разных масштабах ее изменения. Вейвлет-представление сигналов (функций времени) является промежуточным между полностью спектральным и полностью временным представлениями.

Компактные волны относительно независимо были предложены в квантовой физике, физике электромагнитных явлений, математике, электронике и сейсмогеологии. Междисциплинарные исследования привели к новым приложениям данных методов, в частности, в сжатии образов для архивов и телекоммуникаций, в исследованиях турбулентности, в физиологии зрительной системы, в анализе радарных сигналов и предсказании землетрясений. К сожалению, объем русскоязычной научной литературы по тематике вейвлет-преобразований (да и нейронных сетей) относительно невелик.

Базовая идея восходит к временам 200-летней давности и принадлежит Фурье: аппроксимировать сложную функцию взвешенной суммой простых функций, каждая из которых, в свою очередь, получается из одной функции-прототипа. Эта функция-прототип выполняет роль строительного блока, а искомая аппроксимация получается комбинированием одинаковых по структуре блоков. При этом, если "хорошая" аппроксимация получается при использовании небольшого числа блоков, то тем самым достигается значительное уплотнение информации. В качестве таких блоков Фурье использовал синусоиды с различными периодами.

Что прежде всего отличает вейвлет-анализ от анализа Фурье? Основным недостатком Фурье-преобразования является его "глобальная" чувствительность к "локальным" скачкам и пикам функции. При этом модификация коэффициентов Фурье (например, обрезание высоких гармоник с целью фильтрации шума) вносит одинаковые изменения в поведение сигнала на всей области определения. Это особенность оказывается полезной для стационарных сигналов, свойства которых в целом мало меняются со временем.

При исследовании же нестационарных сигналов требуется использование некоторых локализованных во времени компактных волн, коэффициенты разложения по которым сохраняют информацию о дрейфе параметров аппроксимируемой функции. Первые попытки построения таких систем функций сводились к сегментированию сигнала на фрагменты ("окна") с применением разложения Фурье для этих фрагментов. Соответствующее преобразование - оконное преобразование Фурье - было предложено в 1946-47 годах Jean Ville и, независимо, Dennis Gabor. В 1950-70-х годах разными авторами было опубликовано много модификаций времени-частотных представлений сигналов.

В конце 70-х инженер-геофизик Морли (Jean Morlet) столкнулся с проблемой анализа сигналов, которые характеризовались высокочастотной компонентой в течение короткого промежутка времени и низкочастотными колебаниями при рассмотрении больших временных масштабов. Оконные преобразования позволяли проанализировать либо высокие частоты в коротком окне времени, либо низкочастотную компоненту, но не оба колебания одновременно. В результате был предложен подход, в котором для различных диапазонов частот использовались временные окна различной длительности. Оконные функции получались в результате растяжения-сжатия и смещения по времени гаусиана. Морли назвал эти базисные функции вейвлетами (wavelets) - компактными волнами. В дальнейшем благодаря работам Мейера (Yves Meyer), Добеши (Ingrid Daubechies), Койфмана (Ronald Coifman), Маллы (Stephane Mallat) и других теория вейвлетов приобрела свое современное состояние.

Среди российских ученых, работавших в области теории вейвлетов, необходимо отметить С.Б. Стечкина, И.Я. Новикова, В.И. Бердышева.

1. МНОГОМАСШТАБНЫЙ АНАЛИЗ И ВЕЙВЛЕТЫ

Определение 1. Многомасштабный анализ (multiresolutionalanalysis) – разложение гильбертова пространства L2(Rd), d³1, в последовательность замкнутых подпространств

, (1.1)

обладающих следующими свойствами:

1.

, и
полно в L2(Rd),

2. Для любого fÎL2(Rd), для любого jÎZ, f(x)ÎVj тогда и только тогда, когда

f(2x) ÎVj-1,

3. Для любого fÎL2(Rd), для любого kÎZd, f(x)ÎV0 тогда и только тогда, когда f(x-k)ÎV0,

4. Существует масштабирующая (scaling) функция jÎV0, что {j(x-k)}kÎZdобразует

базис Ритца в V0.

Для ортонормальных базисов можно переписать свойство 4 в виде:

4’. Существует масштабирующая функция jÎV0, что {j(x-k)}kÎZdобразует ортонормальный базис в V0.

Определим подпространство Wjкак ортогональное дополнение к Vj в Vj-1,

, (1.2)

и представим пространство L2(Rd) в виде прямой суммы

(1.3)

Выбирая масштаб n, можем заменить последовательность (1.1) следующей последовательностью:

(1.4)

и получить

(1.5)

Если имеем конечное число масштабов, то, не нарушая общности, можно положить j=0 и рассматривать

, V0ÎL2(Rd) (1.6)

вместо (1.4). В числовой реализации подпространство V0 конечномерно.

Функция j - так называемая масштабирующая (скейлинг-) функция. С ее помощью можно определить функциюy - вейвлет - такую, что набор {y(x-k)}kÎZ образует ортонормальный базис в W0. Тогда

, m=0..M-1. (1.7)

Из свойства 4’ непосредственно следует, что, во-первых, функция j может быть представлена в виде линейной комбинации базисных функций пространства V-1 . Так как функции {jj,k(x)=2-j/2j(2-jx-k)}kÎZ образуют ортонормальный базис в Vj, то имеем

. (1.8)

Вообще говоря, сумма в выражении (1.8) не обязана быть конечной. Можно переписать (1.8) в виде

, (1.9)

где

, (1.10)

а 2p-периодическая функция m0 определяется следующим образом:

. (1.11)

Во-вторых, ортогональность {j(x-k)}kÎZ подразумевает, что

(1.12)

и значит

(1.13)

и

. (1.14)

Используя (1.9), получаем

(1.15)

и, рассматривая сумму в (1.15) по четным и нечетным индексам, имеем

. (1.16)

Используя 2p-периодичность функции m0 и (1.14), после замены x/2 на x, получаем необходимое условие

(1.17)

для коэффициентов hk в (1.11). Заметив, что

(1.18)

и определив функцию y следующим образом:

, (1.19)

где

, k=0,…,L-1 , (1.20)

или преобразование Фурье для y

, (1.21)