Смекни!
smekni.com

Пирамида (стр. 2 из 4)

Пирамида в геометрии.

Пирамида - (от греч. pyramis, род. п. pyramidos), многогранник, основание которого многоугольник, а остальные грани треугольники, имеющие общую вершину. По числу углов основания различают пирамиды треугольные, четырехугольные и т. д.

Общая вершина боковых граней называется вершиной пирамиды. Высотой пирамиды называется перпендикуляр, опущенный из вершины пирамиды на плоскость основания.

SABCD – четырёхугольная пирамида;

ABCD – основание пирамиды;

rSAB; rSBC; rSDC; rSDA – боковые грани пирамиды;

S – вершина пирамиды;

SA; SB; SC; SD – боковые рёбра пирамиды

SO – Высота пирамиды

Пирамида правильная – пирамида, у которой в основании лежит правильный многоугольник, а высота, опущенная из вершины пирамиды на плоскость основания, является отрезком, соединяющим вершину пирамиды с центром основания.

Свойства правильной пирамиды:

1. Всё боковые рёбра правильной пирамиды равны между собой.

2. Все боковые грани являются равными между собой равнобедренными треугольниками.

3. Площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на высоту боковой грани, которая называется апофемой.

– периметр основания,

- апофема.

Объем любой пирамиды равен одной трети произведения площади основания на высоту:

Пирамидой, вписанной в конус, является та­кая пирамида, основание которой есть много­угольник, вписанный в окружность основания конуса, а вершиной является вершина конуса. Боковые ребра такой пирамиды являются обра­зующими конуса.

SABCD – пирамида, вписанная в конус.

Пирамидой, описанной около конуса, явля­ется такая пирамида, основание которой есть многоугольник, описанный около основания конуса, а вершина совпадает с вершиной кону­са. Плоскости боковых граней такой пирамиды являются касательными плоскостями конуса.

SKMNP – пирамида, описанная около конуса.

Пирамида усечённая - пирамида, кото­рая получается следующим способом: берется произвольная пирамида, и через точку бокового ребра проводится плоскость, параллельная ос­нованию пирамиды. Данная плоскость раздели­ла пирамиду на две фигуры: подобную исход­ной пирамиду и многогранник, который назы­вается усеченной пирамидой. Основаниями усеченной пирамиды служат подобные много­угольники.

Если усеченная пирамида получается из правильной пирамиды, то она называется пра­вильной усеченной пирамидой. Боковые грани правильной усеченной пирамиды являются рав­ными равнобедренными трапециями. Высота боковой грани называется апофемой правиль­ной усеченной пирамиды. Перпендикуляр, опу­щенный из точки верхнего основания на ниж­нее, называется высотой усеченной пирами­ды.

Площадь полной поверхности усеченной пи­рамиды равна сумме площадей оснований и бо­ковых граней.

ABCDA1B1C1D1 – усечённая правильная пирамида,

O1O– высота,

B1E – апофема усечённой пирамиды.

Объём усечённой пирамиды вычисляется по формуле:

– высота усеченной пирамиды,

и
- площади оснований усеченной пирамиды.

Площадь боковой поверхности правильной усеченной пирамиды вычисляется по формуле:

и
- периметры оснований усечённой правильной пирамиды,

- апофема.

Теоремы.