Доказательство:
Боковые грани правильной пирамиды – равные равнобедренные треугольники, основания которых – стороны основания пирамиды, а высоты равны апофеме. Площадь Sбоковой поверхности пирамиды равна сумме произведений сторон основания на половину апофемы d. Вынося множитель
Задачи.
Задача №1
Построим линию пересечения плоскости грани МАВ пирамиды МАВCD с плоскостью грани MCD.
Решение: Плоскости МАВ и MCD имеют по условию общую точку М. Значит, по аксиоме (если две плоскости имеют общую точку, то они пересекаются по прямой, проходящей через эту точку) они пересекаются по прямой, проходящей через точку М. Найдем еще одну общую точку этих плоскостей. В соответствии с условием прямые АВ и CD лежат в одной плоскости. Построим точку их пересечения:
Точка F принадлежит прямой АВ, две точки которой лежат в плоскости МАВ. Тогда по аксиоме (Если две точки прямой принадлежат плоскости, то все точки прямой, определяемой ими, лежат в этой плоскости) и точка F лежат в плоскости МАВ.
Аналогично заключаем, что точка F лежит и в плоскости MCD. Таким образом, точка F — это вторая общая точка плоскостей МАВ и MCD. Итак, прямая MF — это искомая линия пересечения плоскостей МАВ и MCD.
Задача №2
На ребре МА пирамиды MABCD взята точка Р, а в ее гранях MCD и МВС — соответственно точки Q и R. Построим основной след секущей плоскости
Решение: 1) Построим точки Р', Q' и R' — проекции соответственно точек Р, Q и R на плоскость ABC из центра М. Ясно, что точка Р' совпадает с точкой
Так как прямые МР и MQ пересекаются, то по теореме (Через две пересекающиеся прямые проходит плоскость, и притом одна) через них
проходит плоскость. По теореме этой плоскости принадлежат прямые PQ и P'Q'. Построим точку
Так как точка
Построим еще одну общую точку плоскостей а и ABC. Например,
точку
Задача №3
Центр верхнего основания куба с ребром, равным
Решение: Так как ребро куба равно а, то сторона основания пирамиды
SABCD равна
Значит,
Ответ:
Задача №4
Апофема правильной шестиугольной пирамиды равна h, а двугранный угол при основании равен
|
Решение: Так как
Основание пирамиды – правильный шестиугольник, поэтому
Окончательно находим
Ответ:
Задача №5
В основании пирамиды лежит квадрат. Две боковые грани перпендикулярны плоскости основания, а две другие наклонены к нему под углом
|
Решение: По условию,
Находим
Полная поверхность выразится так:
Но
Итак,
Ответ: