Смекни!
smekni.com

Поверхности второго порядка (стр. 2 из 3)


1)Пусть р=0, q =0. ПоверхностьSраспадается на пару пло­скостей

При этом, очевидно, эти плоскости будут мнимыми, если знаки a11иа22одинаковы, и вещественными, если знаки a11 иа22различны.

2)Пустьр=0, q ≠ 0. Уравнение (9) принимает вид

a11х2 + а22у2 + q = 0 (10)

Известно, что уравнение (10) яв­ляется уравнением цилиндра с образующими, параллельными оси Оz. При этом если a11 , а22 , qимеют одинаковый знак, то левая часть (10) отлична от нуля для любых х и y, т. е. ци­линдр будет мнимым. Если же среди коэффициентов a11 , а22 , qимеются коэффициенты разных знаков, то цилиндр будет ве­щественным. Отметим, что в случае, когда a11 и а22имеютодинаковые знаки, a q противоположный, то величины

положительны.

Обозначая их соответственно через а2и b2, мы приведем уравнение (10) к виду

Таким образом, в отмеченном случае мы имеем эллиптический цилиндр. В случае, a11 и а22 имеют различные знаки, мы получим гиперболический цилиндр. Легко убедиться, что урав­нение гиперболического цилиндра может быть приведено к виду

3)Пусть р0. Произведем параллельный перенос системы координат, выбирая новое начало в точке с координатами

(0, 0, ).

При этом оставим старые обозначения координатх, у, z. Очевидно, для того чтобы получить уравнение поверх­ности S в новой системе координат, достаточно заменить в урав­нении (9)

Получим следующее уравнение:

a11х2 + а22у2 + 2pz = 0 (13)

Уравнение (13) определяет так называемые параболоиды. Причем если a11 и а22имеют одинаковый знак, то параболоид называется эллиптическим. Обычно уравнение эллиптического параболоида записывают в канонической форме:

Уравнение (14) легко получается из (13). Если a11 и а22имеют разные знаки, то параболоид называется гиперболиче­ским. Каноническое уравнение гиперболического параболоида имеет вид

Это уравнение также легко может быть получено из (13).

-2°.Два из коэффициентов11 , а´22 ,33 равны нулю. Ради определенности будем считать, что11= 0 и а´22= 0 Перейдем отх,', у', z'к. новымкоординатам х, у, z по формулам :

Подставляя х', у' и z', найденные из (16) в левую часть (7) и заменяя затем 33 на a33 , 14 на р,24 наq и 44 на r, по­лучим следующее уравнение поверхности S в новой системе ко­ординат Охуz:

a33 z2 + 2px + 2qy + r = 0 (17)


1)Пусть р=0, q=0. Поверхность Sраспадается на пару па­раллельных плоскостей

При этом, очевидно, эти плоскости будут мнимыми, если знаки a33иr одинаковы, и вещественными, если знакиa33 и r различ­ны, причем при r = 0 эти плоскости сливаются в одну.

2)Хотя бы один из коэффициентов р или q отличен от нуля. В этом случае повернем систему координат вокруг осиOz так, чтобы новая ось абсцисс стала параллельной плоскости 2рх+2qy+r=0. Легко убедиться, что при таком выборе системы координат, при условии сохранения обозначения х, уи z для новых координат точек, уравнение (17) примет вид

a33 z2 + 2q´y = 0 (19)

которое является уравнением параболического цилиндра с обра­зующими, параллельными новой оси Ох.

§ 3. Исследование формы поверхностей второго порядка по их каноническим уравнениям

1. Эллипсоид.

Из уравнения (3) вытекает, что координатные плоскости яв­ляются плоскостями симметрии эллипсоида, а начало коорди­нат—центром симметрии. Числа а, b, сназываются полуосями эллипсоида и представляют собой длины отрезков, от начала координат до точек пересечения эллипсоида с осями координат. Чтобы более наглядно представить себе формуэллипсоида, выясним форму линий пересечения его плоскостями, параллельными какой-либо из координатных плоскостей.

Ради определенности рассмотрим линииLh пересечения эл­липсоида с плоскостями

z = h(20)

параллельными плоскости Оху. Уравнение проекцииL*hли­нииLhна плоскость Охуполучается из уравнения (3), если положить в немz = h. Таким образом, уравнение этой проекции имеет вид


Если положить

то уравнение (21) можно записать в виде


т. е.L*hпредставляет собой эллипс с полуосями а* и b*, которые могут быть вычислены по формулам (22). Так как Lh получается «подъемом»L*h на высоту h по оси Оz(см. (20)), то и Lhпредставляет собой эллипс.

Представление об эллипсоиде можно получить следующим об­разом. Рассмотрим на плоскости Оху семейство эллипсов (23) (рис. 1), полуоси а* и b* которых зависят отh (см. (22)), и каждый такой эллипс снабдим отметкой h, указывающей, на ка­кую высоту по оси Оz должен быть «поднят» этот эллипс. Мыполучим своего рода «карту» эллипсоида. Используя эту «кар­ту», легко представить себе пространственный вид эллипсоида.

(Метод представления формы фигуры путем получения «карты» фигуры я привожу только для эллипсоида, представить форму других фигур этим методом можно аналогично)

Наглядное изображение эллипсоида находится на следующей странице.

Эллипсоид


.

2. Гиперболоиды.

-. Однополостный гиперболоид. Обратимся к каноническому

уравнению (4) однополостного гиперболоида

Из уравнения (4) вытекает, что координатные плоскости яв­ляются плоскостями симметрии, а начало координат — центром симметрии однополостного гиперболоида.


-. Двуполостный гиперболоид.Из канонического уравнения (5)двуполостного гиперболоида вытекает, что координатные пло­скости являются его плоскостями симметрии, а начало коорди­нат — его центром симметрии.

3. Параболоиды.

-1°.Эллиптический параболоид. Обращаясь к каноническому уравнению (14) эллиптического параболоида

мы видим, что для негоOxz и Оуz являются плоскостями симметрии. Ось Oz, представляющая линию пересечения этих плоскостей, называется осью эллиптического параболоида.


-2°.Гиперболический пара­болоид. Из канонического уравнения (15)




гиперболического параболои­да вытекает, что плоскости Oxz и Оуz являются плоско­стями симметрии. ОсьOz называется осью гиперболического пaраболоида.

Прим.: получение «карты высот» для гиперболического пaраболоида несколько отличается от аналогичной процедуры для вышеприведенных поверхностей 2-го порядка, поэтому я также включил его в свой реферат.

Линииz=h пересечения гиперболического параболоида плоскостямиz=h представляют собой при h>0 гиперболы

с полуосями


а приh < 0 —сопряженные гиперболы для гипербол (24)

с полуосями


Используя формулы (24)—(27), легко построить «карту» гиперболического параболоида. Отметим еще, плоскость z=0 пересекает гиперболический параболоид по двум прямым :