Смекни!
smekni.com

Поверхности второго порядка (стр. 1 из 3)

Содержание.

· Понятие поверхности второго порядка.

1. Инварианты уравнения поверхности второго порядка.

· Классификация поверхностей второго порядка.

1. Классификация центральных поверхностей.

-1°. Эллипсоид.

-2°. Однополостный гиперболоид.

-3°. Двуполостный гиперболоид.
-4°. Конус второго порядка.

2. Классификация нецентральных поверхностей.

-1°. Эллиптический цилиндр, гиперболический цилиндр, эллиптический параболоид, гиперболиче­ский параболоид.

-2°. Параболический цилиндр

•Исследование формы поверхностей второго порядка по их каноническим уравнениям.

1. Эллипсоид.
2. Гиперболоиды.

- 1°. Однополостный гиперболоид.

-2°. Двуполостный гиперболоид.

3. Параболоиды.

-1°. Эллиптический параболоид.
-2°. Гиперболический пара­болоид.

4. Конус и цилиндры второго порядка.

- 1°. Конус второго порядка.
-2°. Эллиптический цилиндр.
-3°. Гиперболический цилиндр.
-4°. Параболический цилиндр.

Список использованной литературы.

§ 1. Понятие поверхности второго порядка.

Поверхность второго порядка - геометрическое место точек, декартовы прямоугольные координаты которых удовлетворяют уравнению вида

a11х2 + а22у2 +a33z2+2a12xy +2a23уz + 2a13xz +14x +24у+2а34z44 =0 (1)

в котором по крайней мере один из коэффициентов a11 , а22 , a33 , a12 , a23 , a13отличен от нуля.

Уравнение (1) мы будем называть общим уравнением по­верхности второго порядка.

Очевидно, поверхность второго порядка, рассматриваемая как геометрический объект, не меняется, если от данной де­картовой прямоугольной системы координат перейти к другой декартовой системе координат. Отметим, что исходное уравне­ние (1) и уравнение, полученное после преобразования коор­динат, алгебраически эквивалентны.


1. Инварианты уравнения поверхности второго порядка.

Справедливо следующее утверждение.

являются инвариантами уравнения (1) поверхности второго-порядка относительно преобразований декартовой системы ко­ординат.

Доказательство этого утверждения приведено в выпуске «Линейная алгебра» настоящего курса.

§ 2. Классификация поверхностей второго порядка

1. Классификация центральных поверхностей. Пусть S — центральная поверхность второго порядка. Перенесем начало координат в центр этой поверхности, а затем произведем стан­дартное упрощение уравнения этой поверхности. В резуль­тате указанных операций уравнение поверхности примет вид

a11х2 + а22у2 +a33z2 + а44 = 0 (2)

Так как инвариант I3 для центральной поверхности отличен от ноля и его значение, вычисленное для уравнения (2) , равно a11 а22a33, то коэффициенты a1122 ,a33 удовлетворяют условию :


Возможны следующие случаи:

-1°.Коэффициентыa1122 ,a33 одного знака, а коэффициента44 отличен от нуля. В этом случае поверхность S называется эллипсоидом.

Если коэффициенты a1122 ,a33, а44 одного знака, то левая часть (2) ни при каких значениях х, у, z не обращается в нуль, т. е. уравнению поверхности S не удовлетворяют коорди­наты никакой точки. В этом случае поверхность S называется мнимым эллипсоидом.

Если знак коэффициентов a1122 ,a33противоположен знаку коэффициента а44, то поверхность S называется вещественным эллипсоидом. В дальнейшем термином «эллипсоид» мы будем называть лишь вещественный эллипсоид.

Обычно уравнение эллипсоида записывают в канонической форме. Очевидно, числа

положительны. Обозначим эти числа соответственно а2, b2, с2. После не­сложных преобразований уравнение эллипсоида (2) можно записать в следующей форме:

Уравнение (3) называется каноническим уравнением эллип­соида.

Если эллипсоид задан своим каноническим уравнением (3), то оси Ох, Оу и Оz. называются его главными осями.

-2°.Из четырех коэффициентов a1122 ,a33, а44 два одного зна­ка, а два других—противоположного. В этом случае поверх­ность S называется однополостным гиперболоидом.

Обычно уравнение однополостного гиперболоида записывают в канонической форме. Пусть, ради определенности, a11 > 0,а22 >0, a33 <0,а44 <0. Тогда числа

положительны. Обозначим эти числа соответственно а2, b2, с2. После несложных преобразований уравнение (2) однополостного гиперболоида можно записать в следующей форме:

Уравнение (4) называется каноническим уравнением однопо­лостного гиперболоида.

Если однополостный гиперболоид задан своим каноническим уравнением (4), то оси Ох, Оу иOz называются его глав­ными осями.

-. Знак одного из первых трех коэффициентов a1122 ,a33, а44противоположен знаку остальных коэффициентов. В этом случае поверхность S называется двуполостным гиперболоидом.

Запишем уравнение двуполостного гиперболоида в канониче­ской форме. Пусть, ради определенности, a11 < 0,а22 <0, a33 >0,а44 <0. Тогда :

Обозначим эти числасоответственно через a2, b2, с2. Поcли несложных преобразова­ний уравнение (2) двуполостного гиперболоида можно запи­сать в следующей форме:

Уравнение (5) называется каноническим уравнением двупо­лостного гиперболоида.

Если двуполостный гиперболоид задан своим каноническим

уравнением, то оси Ох, Оу и Оz называются его главными осями.

-. Коэффициента44равен нулю. В этом случае поверхность S называетсяконусом второго порядка.

Если коэффициенты a11 ,а22 , a33 одного знака, то левая часть (2) обращается в нуль (а44 =0) лишь для х=у=z=0, т. е. уравнению поверхности S удовлетворяют координаты только едной точки. В этом случае поверхность S называется мнимым конусом второго порядка. Если коэффициенты a11 ,а22 , a33имеют разные знаки, то поверхность S является вещественным конусом второго порядка.

Обычно уравнение вещественного конуса второго порядка за­писывают в канонической форме. Пусть, ради определенности,

a11 > o, а22 > 0,a33 <0. Обозначим

соответственно через а2, b2, с2. Тогда уравнение (2) можно записать в виде

Уравнение (6) называется каноническим уравнением веще­ственного конуса второго порядка.





2. Классификация нецентральных поверхностей второго по­рядка.

Пусть S — нецентральная поверхность второго порядка, т. е. поверхность, для которой инвариантI3равен нулю. Произведем стандартное упрощение урав­нения этой поверхности. В результате уравнение поверхности примет вид

11х´2 + а´22у´2 +33z´2 +´14+´24у´+2а´34´44 =0 (7)

для системы координат Ox´y´z´

Так как инвариант I3 =0 и его значение, вы­численное для уравнения (7), равно

11 • а´22 33, то один или два из коэффициентов 11 , а´22 ,33равны нулю. В соответствии с этим рассмотрим следующие возможные случаи.


-. Один из коэффициентов11 , а´22 ,33равен нулю. Радиопределенности будем считать, что33 =0(если равен нулю ка­кой-либо другой из указанных коэффициентов, то можно перей­ти к рассматриваемому случаю путем переименования осей координат). Перейдем от координат х', у', z'к новым координатам х, у, z по формулам

Подставляях', у' и z', найденные из (8), в левую часть (7) и заменяя затем

11наa11, а´22 на а22 , а´34 на pи а´44на q, получим следующее уравнение поверхности S в новой системе ко­ординатOxyz :

a11х2 + а22у2 + 2pz + q = 0 (9)