получают число, которое называют численным значением при выбранной единице.
Процесс сравнения зависит от рода рассматриваемых величин: для длин он один, для площадей - другой, для масс- третий и так далее. Но каким бы ни был этот процесс, в результате измерения величина получает определённое численное значение при выбранной единице.
Вообще, если дана величина а и выбрана единица величины e, то в результате измерения величины а находят такое действительное число x, что а=xe. Это число x называют численным значением величины а при единице е. Это можно записать так: х=m (a).
Согласно определению любую величину можно представить в виде произведения некоторого числа и единицы этой величины. Например, 7 кг = 7 1 кг, 12 см =12 1 см, 15ч =15 1 ч. Используя это, а также определение умножения величины на число, можно обосновать процесс перехода от одной единицы величины к другой. Пусть, например, требуется выразить 5/12ч в минутах. Так как, 5/12ч = 5/12 60мин = (5/12 60)мин = 25мин.
Величины, которые вполне определяются одним численным значением, называются скалярными величинами. Такими, к примеру, являются длина, площадь, объём, масса и другие. Кроме скалярных величин, в математике рассматривают ещё векторные величины. Для определения векторной величины необходимо указать не только её численное значение, но и направление. Векторными величинами являются сила, ускорение, напряжённость электрического поля и другие.
В начальной школе рассматриваются только скалярные величины, причём такие, численные значения которых положительны, то есть положительные скалярные величины.
Измерение величин позволяет свести сравнение их к сравнению чисел, операции над величинами к соответствующим операциям над числами.
1/.Если величины а и b измерены при помощи единицы величины e, то отношения между величинами a и b будут такими же, как и отношения между их численными значениями, и наоборот.
a=b m (a)=m (b), a>b m (a)>m (b), a<b m (a)<m (b).Например, если массы двух тел таковы, что а=5 кг, b=3 кг, то можно утверждать, что масса а больше массы b поскольку 5>3.
2/ Если величины а и b измерены при помощи единицы величины e, то, чтобы найти численное значение суммы a+b достаточно сложить
численные значения величин а и b. а+b= cm (a+b) = m (a) + m (b). Например, если а = 15 кг, b=12 кг, то а+b=15 кг + 12 кг = (15+12) кг = 27кг
З/ Если величины а и b таковы, что b= x а, где x -положительное действительное число, и величина а, измерена при помощи единицы величины e, то чтобы найти численное значение величины b при единице e, достаточно число x умножить на число m (а):b=xam (b)=xm (a).
Например, если масса а в 3 раза больше массы b.т.е. b= За и а = 2 кг, то
b= За=3 (2 кг) = (3 2) кг = 6кг.
Рассмотренные понятия - объект, предмет, явление, процесс, его величина, численное значение величины, единица величины - надо уметь вычленять в текстах и задачах.
Например, математическое содержание предложения «Купили 3 килограмма яблок» можно описать следующим образом: в предложении рассматривается такой объект, как яблоки, и его свойство - масса; для измерения массы использовали единицу массы - килограмм; в результате измерения получили число 3 -численное значение массы яблок при единице массы - килограмм.
Рассмотрим определения некоторых величин и их измерений.
Длина отрезка и её измерение.
Длиной отрезка называется положительная величина, определённая для каждого отрезка так что:
1/ равные отрезки имеют разные длины;
2/ если отрезок состоит из конечного числа отрезков, то его длина равна сумме длин этих отрезков.
Рассмотрим процесс измерения длин отрезков. Из множества отрезков выбирают какой-нибудь отрезок e и принимают его за единицу длины. На отрезке а от одного из его концов откладывают последовательно отрезки равные e, до тех пор, пока это возможно. Если отрезки, равные e отложились n раз и конец последнего совпал с концом отрезка e, то говорят, что значение длины отрезка а есть натуральное число n, и пишут: а = ne. Если же отрезки, равные e, отложились n раз и остался ещё остаток, меньший e, то на нём откладывают отрезки равные e =1/10e. Если они отложились точно n раз, то тогда а=n, ne и значение длины отрезка а есть конечная десятичная дробь. Если же отрезок eотложился n раз и остался ещё остаток, меньший e , то на нём откладывают отрезки, равные e =1/100e. Если представить этот процесс бесконечно продолженным, то получим, что значение длины отрезка а есть бесконечная десятичная дробь.
Итак, при выбранной единице, длина любого отрезка выражается действительным числом. Верно и обратное; если дано положительное действительное число n, n , n , ... то взяв его приближение с определённой
точностью и проведя построения, отражённые в записи этого числа, получим отрезок, численное значение длины которого, есть дробь: n ,n ,n …
Площадь фигуры и её измерение.
Понятие о площади фигуры имеет любой человек: мы говорим о площади комнаты, площади земельного участка, о площади поверхности, которую надо покрасить, и так далее. При этом мы понимаем, что если земельные участки одинаковы, то площади их равны; что у большего участка площадь больше; что площадь квартиры слагается из площади комнат и площади других её помещений.
Это обыденное представление о площади используется при её определении в геометрии, где говорят о площади фигуры. Но геометрические фигуры устроены по-разному, и поэтому когда говорят о площади, выделяют особый класс фигур. Например, рассматривают площади многоугольников и других ограниченных выпуклых фигур, или площадь круга, или площадь поверхности тел вращения и так далее. В начальном курсе математики рассматриваются только площади многоугольников и ограниченных выпуклых плоских фигур. Такая фигура может быть составлена из других. Например, фигура F, (рис.4), составлена из фигур F1, F2, F3. Говоря, что фигура составлена (состоит) из фигур F1, F2,…,Fn, имеют в виду, что она является их объединением и любые две данные фигуры не имеют общих внутренних точек. Площадью фигуры называется неотрицательная величина, определённая для каждой фигуры так, что:
I/ равные фигуры имеют равные площади;
2/ если фигура составлена из конечного числа фигур, тоеёплощадь равна сумме их площадей. Если сравнить данное определение с определением длины отрезка, то увидим, что площадь характеризуется теми же свойствами, что и длина, но заданы они на разных множествах: длина - на множестве отрезков, а площадь - на множестве плоских фигур. Площадь фигуры F обозначать S(F). Чтобы измерить площадь фигуры, нужно иметь единицу площади. Как правило, за единицу площади принимают площадь квадрата со стороной, равной единичному отрезку e, то есть отрезку, выбранному в качестве единицы длины. Площадь квадрата со стороной e обозначают e. Например, если длина стороны единичного квадрата m, то его площадь m .
Измерение площади состоит в сравнении площади данной фигуры с площадью единичного квадрата e. Результатом этого сравнения является такое число x, что S(F)=xe .Число xназывают численным значением площади при выбранной единице площади.
Так, если единицей площади является см, то площадь фигуры, приведённой на рисунке 5, равна 5см.
Рассмотрим один из приёмов, опирающихся непосредственно на определение площади, является измерение площади при помощи палетки- сетки квадратов, нанесённый на прозрачный материал.
Допустим, на фигуру F. площадь которой надо измерить, наложена сетка квадратов со стороной e. Тогда по отношению к этой фигуре можно выделить квадраты двух видов:
1/ квадраты, которые целиком лежат внутри фигуры F.
2/ квадраты, через которые проходит контур фигуры, и которые лежат частью вне фигуры F.
Пусть квадратов первого вида окажется m, а квадратов второго вида n. Тогда, очевидно, площадь фигуры F будет удовлетворять условию.
m <S(F)<(m+n) . Числа m и m+n будут приближёнными численными значениями измеряемой площади: первое число с недостатком, второе - с избытком.
Как видим, что палетка позволяет измерить площадь фигуры лишь с невысокой точностью. Чтобы получить более точный результат, можно уплотнить первоначальную сеть квадратов, разделив каждый из них на более мелкие квадраты. Можно, например, построить сеть квадратов со стороной e =1/10e.
В результате мы с большой точностью получим другие приближенные значения площади фигуры F.
Описанный процесс можно продолжить. Возникает вопрос: существует ли такое действительное число, которое больше всякого приближённого результата измерения, взятого с избытком, и которое может быть точным численным значением измеряемой площади? В математике доказано, что при выбранной единице площади такое число существует для всякой площади, оно единственно и удовлетворяет свойствам 1 и 2.
Масса и её измерение.
Масса - одна из основных физических величин. Понятие массы тела тесно связано с понятием веса-силы, с которой тело притягивается Землёй. Поэтому вес тела зависит не только от самого тела. Например, он различен на разных широтах: на полюсе тело весит на 0,5 % больше, чем на экваторе. Однако при своей изменчивости вес обладает особенностью: отношение весов двух тел в любых условиях остаётся неизменным. При измерении веса тела путём сравнения его с весом другого выявляется новое свойство тел, которое называется массой. Представим, что на одну из чашек рычажных весов положили какое-нибудь тело, а на другую чашку положили второе тело b. При этом возможны случаи:
1) Вторая чашка весов опустилась, а первая поднялась так, что они оказались в результате на одном уровне. В этом случае говорят, что весы находятся в равновесии, а тела а и b имеют равные массы.
2) Вторая чашка весов так и осталась выше первой. В этом случае говорят, что масса тела а больше массы тела b.