Смекни!
smekni.com

Построение графика функции различными методами (самостоятельная работа учащихся) (стр. 4 из 8)

Тема Основная цель
Графики зависимостей y=x, y=-x, y=x2, y=x3, y=½x½. Графики реальных зависимостей Познакомьтесь с графиками зависимостей y=x, y=-x, y=x2, y=x3, y=½x½, сформировать первоначальные навыки интерпретации графиков реальных зависимостей. Учащиеся должны уметь достаточно быстро строить графики, указывая несколько характерных точек, изображать эти графики схематически. Рассматривается график y=½x½. Специальное внимание уделяется работе с графиками реальных зависимостей температуры, движения и др. Акцент ставится на умение считывать с графика нужную информацию.
Графики функций y=kx, y=kx+l, y=k/x. Графики реальных зависимостей При построении графиков формулируется представление об общих свойствах функции (нули, промежутки, монотонности, сохранение знака)
График функции y=ax2+bx+c. Научит строить график квадратичной функции, по графику читать её свойства; учащимся сообщается, что графиком квадратичной функции является парабола, рассматриваются готовые графики квадратичной функции и анализируются их особенности (наличие оси симметрии, вершины направление ветвей, расположение по направлению к оси). Учащиеся учатся строить параболу по точкам с опорой на её симметрию. Сначала рассматриваются свойства и график функции y=ax2, затем показывается как при сдвигах параболы y=ax2 вдоль осей координат получаются графики новых квадратичных функций. Здесь формируется умение находить вершину и ось симметрии графиков квадратичных функций, заданных формулами y=ax2+q, y=a(x+p)2, y=a(x+p)2+q. Рассматриваются некоторые примеры, связанные с переносом вдоль осей координат произвольных графиков. Центральным моментом является доказательство того, что график любой квадратичной функции y=ax2+bx+c может быть получен с помощью сдвигов вдоль координатных осей параболы y=ax2, после чего учащиеся могут находить абсциссу вершины параболы по известной формуле. Значительное место отводиться задачам прикладного характера, которые решаются с опорой на графические представления.

Старшая школа

«Алгебра и начала анализа, 10 – 11 класс», авт. М.И Башмаков.

Тема Основная цель
Графики тригонометрических функций Изучить свойства и графики тригонометрических функций, учащиеся должны хорошо усвоить вид графиков тригонометрических функций.
Графики показательной и логарифмической функции Изучить графики показательной и логарифмической функции

“Алгебра и начала анализа, 10 - 11”, авт. А.Н. Колмогоров, А.М. Абрамов, Ю.П. Дудницин и др.

Графики тригонометрических функций Особое внимание нужно обратить на графическую интерпретацию свойств.Значительно расширит возможности учащихся в построении графиков функции рассмотрение вопроса о преобразовании графиков (параллельный перенос на заданный вектор, растяжение вдоль оси Ох), что позволит осознано строить графики гармонических колебаний
Применение производной к исследованию функции и построению её графика Существенное внимание следует уделить решению разнообразных задач связанных с иследованием функции.

“Алгебра и начала анализа, 10 - 11”, авт. Ш.А. Алимов, Ю.М. Колягин, Ю.В. Сидоров и др.

Тема Основная цель
Степенная, покозательная, логарифмическая функции их свойства и графики Познакомить учащихся с графиками этих функций. Познакомить их с многообразием свойств и графиков степенной функции в зависимости от значений оснований и покозателей степени. Особое внимание уделяется иллюстрации свойств функции по графику.
Тригонометрические функции и их графики. Научит учащихся строить графики тригонометрических функций. Учащиеся должны научится выполнять эскизы графиков, используя эти свойства, а также устонавливать эти свойства по графику.
Применение производной к построению графиков функций При изучении графика функций полезно показать построение графиков функций, которой не являются неприрывной на всей области определения. И особенности построения графиков четной и не четной функции.

Программа для школы с углубленным изучением математики.

«Алгебра, 8», авт. Н.Я. Виленкин, А.Н. Виленкин, Г.С. Сурвилло и др. «Алгебра, 9», авт. Н.Я. Виленкин, Г.С. Сурвилло, А.С. Симонов, А.И. Кудрявцев.

Тема
График функции. Простейшие преобразования графиков (параллельные переносы вдоль координатных осей). График функции y=k/x. График дробно – линейной функции. График функции вида y=Öx, y=Ö(x-m)+n. Отражение свойств функции на графике. Преобразование графиков функций: симметрия относительно осей координат и относительно прямойy=x. Построение графиков кусочно-заданных функций. Построение графиков функций связанных с модулем. Примеры построения графиков рациональных функций. Графики функций y=[x], y={x}. Графики функций y=xn, y=Öx.

«Алгебра, 8», «Алгебра, 9», авт. Ю.Н. Макарычев, Н.Г. Миндюк, К.И. Нелеков, С.Б. Суворова, «Учебные пособия, Алгебра. Дополнительные главы к школьному учебнику 8 (9) класса», авт. Ю.Н. Макарычев, Н.Г. Миндюк.

Тема
Построение преобразование графиков функций. График функции y=k/x. График дробно – линейной функции. График функции вида y=Öx, y=Ö(x-m)+n. График квадратичной функции. Построение графиков функций. График функций y=-f(x), y=f(-x), y=-f(-x), y=½f(x)½ y=f(½x½). [Графики функций y=½x½ и y={x}.].

«Алгебра и математический анализ, 10», «Алгебра и математический анализ, 11», авт. Н.Я. Виленкин, О.С. Ивашев-Мусатов, С.И. Шварцбурд.

Тема
Построение графиков функций элементарными методами. Преобразование графиков. Графики дробно – линейных функций. Графики функций, связанных с модулем. Графики взаимно обратных функций. Построение графиков функций с помощю производной. Графики тригонометрических функций. Графики показательной и логарифмической функции

§2. Построение графика функций с помощью преобразования

Во многих случаях графики функций могут быть построены путем некоторых преобразований уже известных графиков других функций более простого вида. График функций вида:

y=Af(ax+b)+B

может быть получен из графика функций y=f(x)при помощи следующих геометрических преобразований:

1. а) Осевой симметрии относительно оси 0X;

б) осевой симметрии относительно оси0Y;

в)центральной симметрии относительно начала координат точки0;

2. а) Параллельного переноса (сдвига) вдоль оси 0X;

б) параллельного переноса (сдвига) вдоль оси 0Y;

3. а) Растяжения (или сжатия) по направлению оси 0X;

б) растяжения (или сжатия) по направлению оси 0Y;

Отметим, что:

1. а) При осевой симметрии относительно оси 0X точка (x; y) переходит в точку (x; -y);

б) При осевой симметрии относительно оси 0Y точка (x; y) переходит в точку (-x; y);

в) При центральной симметрии относительно начала координат (x; y) переходит в точку (-x; -y);

2. а) При параллельном переносе вдоль оси 0X точка (x; y) переходит в точку (x+a; y), где а – некоторое число при этом перенос происходит «вправо», если а>0, и «влево», если а<0;

б) ) При параллельном переносе вдоль оси 0Y точка (x; y) переходит в точку (x; y+b), где b – некоторое число при этом перенос происходит «вверх», если b>0, и «вниз», если b<0;

3. а) При растяжении (сжатии) в pраз (p>0, p¹1)вдоль оси 0X относительно 0Y точка(x; y) переходит в точку(px; y);

б)При растяжении (сжатии) в qраз (q>0, q¹1)вдоль оси 0Y относительно 0X точка(x; y) переходит в точку(x; qy);

Применительно к графикам функций эти свойства дают те конкретные геометрические преобразования (табл. 1), использование которых позволяет из известного графика функции y=f(x)строить графики других функций (рис. 1 - 11).

Таблица №1