Смекни!
smekni.com

Построение графика функции различными методами (самостоятельная работа учащихся) (стр. 8 из 8)

«Проверьте свое решение». В такой ситуации ученик, как правило, не знает, что ему при этом надо делать и в лучшем случае просто прочитывает свое решение еще раз. Однако ему трудно увидеть ошибки и немудрено, что ошибочное решение часто остается неис­правленным. Анализ же условия и обдуманная наметка пути реше­ния на первоначальном этапе более эффективны в плане самоконтро­ля, так как ученик получает возможность контролировать свои действия на каждом этапе выполнения задания. Так, например, установив, что графиком функции является прямая, ученик уже не станет изображать на рисунке параболу. Зная, что угол наклона прямой к оси х должен быть острым, он насторожится, если у него на рисунке получится тупой угол, и это может заставить его пересмотреть некоторые моменты своего решения. Базу для такого самоконтроля создает твердое знание основного теоретического материала, знание свойств функций.

Для прочного усвоения свойств изучаемых функций необходимо включать специальные упражнения, заставляющие учащихся актуа­лизировать имеющиеся у них знания о функциях, выполнять некото­рый перебор знаний с целью выбора нужных в данной ситуации. С этой точки зрения эффективны упражнения на соотнесение графика функции с формулой, задающей эту функцию. Например, после изу­чения свойств линейной функции можно предложить учащимся зада­ние такого типа: «На рисунке изображены графики линейных функ­ций и приведены формулы, задающие эти функции: y=-0,5x+1;у=3; у=2х+2; y=3x. Установите, какая формула соответствует каждому из представленных графиков». Эти упражнения легко варьировать, увеличивая, например, число приводимых формул, пос­ле изучения новых видов функций, включая графики различных функций. Например, предложить учащимся соотнести каждый из гра­фиков, изображенных на рисунке, с формулами:

y=2х—1; у=2х; у=х2; y=3/x; y3.

Подобные задания можно выполнять устно при фронтальной ра­боте с классом и письменно в виде самостоятельной работы. В первом случае следует непременно требовать от учащихся обоснования свое­го выбора. Не отнимая много времени на уроке, эти упражнения при­носят существенный эффект и помогают добиться прочных умений. в построении графиков функций.

В заключение отметим, что, хотя работа по обучению учащихся умению самостоятельно решать основные виды задач еще не реша­ет проблемы развития самостоятельности учащихся в целом и ее, конечно, недостаточно для достижения такой цели, все же эта работа является важным этапом в ее достижении. Обучение деятельности по образцу имеет в математике свою специфику, так как в большин­стве случаев такая деятельность не сводится к чисто воспроизводя­щей. Воспроизводится именно способ решения, сама же задача, ее конкретные данные всегда варьируются. При решении любой за­дачи, при выполнении каждого упражнения ученик осуществляет хотя бы элементарный перенос знаний, актуализирует необходимый способ действий, определяет путь решения. Таким образом, целена­правленная и тщательная работа по организации овладения всеми учащимися необходимым набором умений создает основу для пере­хода на более высокий уровень самостоятельности, является необхо­димой базой такого перехода. Кроме того, эта работа не только не противоречит идее развития у учеников общеучебных умений, состав­ляющих основу самостоятельной деятельности каждого ученика, но включает в себя большие возможности в этом плане и, правильно организованная, служит начальным этапом формирования этих умений.

ЛИТЕРАТУРА

1. С.И. Демидова, Л.О. Денищева «Самостоятельная деятельность учащихся при обучении математике»-М:,Просвищение-1985г.-192с.

2. Народное образование№6-1990г.,с.62

3. «Математика в школе»№3-1998г.,с.37

4. «Математика в школе»№2-1999г.,с.53

5. Газета «Математика»№33-1999г.

6. Газета «Математика»№16-1998г.

7. В.В. Вавилов, И.И. Мельников, С.Н. Олехник, П.И. Пасеченко «Задачи по математике. Начало анализа: Справочное пособие» - М:, Наука. Гл. ред. Физ. - мат. лит.,1990-608с.

8. Газета «Математика»№39-1997г.

9. В.Г. Болтянский, Ю.В. Сидоров, М.И, Шабунин, А.Б. Марткович «Математика. Лекции, задачи, решение» - Минск, Издательство»Альфа»-1994г.-638с.

10. Алгебра и начало анализа. Учебник для 10-11 кл. сред. шк./ А.Н. Колмагоров, А.М. Абрамов, Ю.П. Дубницин и д.р.: Под ред. А.Н. Колмагорова-2-е изд.-М.:Просвещение, 1991г.-320с.

11. Алгебра; Учебник для 9 класса средней школы-/Ю.Н. Макарычев, Н.Г. Миндюк, К.И. Нешков, С.Б. Суворова; Под ред. .А. Теляковского.–2-е изд.–М.:Просвещение, 1992г.-271с.

12. Дидактические материалы по алгебре и начале анализа для 11 кл. /Б.М. Ивлев, С.М.Саакян, С.И. Шварцбурд. - М.: Просвещение, 1991г. – 192с.

13. Дидактические материалы по алгебре и начале анализа для 9 кл.: Пособие для учителя /Б.М. Ивлев, С.М.Саакян, С.И. Шварцбурд. - 2-е изд. перераб. - М.: Просвещение, 1987г.

14.Программа общеобразовательных учреждений «Математика» - М; Просвещение, 1994г.

15. «Математика в школе» №6 – 1996г. 21с.

16. «Математика в школе» №5 – 1999г. 2с.

17. А.Д. Мышкис «Лекции по высшей математике» - М;, 1969г.

18. В.В. Зайцев, В.В. Рыжков, М.И. Сканави, «Элементарная математика» - М;, Наука 1976г., 591с.

19. Г.И. Багатырев, О.А. Боковнев, «Математика для подготовительных курсов техникумов»

20. Я.Б. Зельдович «Высшая математика для начинающих и ее приложение к физике.» М.,Физматгиз-1963г.-560с.

21. В.А. Слабодская «Краткий курс высшей математики. Изд. 2-е,переработ. и доп. Учеб. Пособие для втузов. М., Высшая школа-1969г.-544с.

22. А.Я. Симонов, Д.С. Бакаев, А.Г. Эпельман «Система тренировочных задач и упражнений по математике» М.:Просвещение,1991г.-208с.

23. П.П. Коровкин «Математический анализ» М.: Просвещение, 1974г.-464с.