В ту пору математических журналов еще не существовало, информацией обменивались в письмах, и как правило, результаты лишь анонсировались, но не сопровождались детальными доказательствами.
Правда, спустя почти двадцать лет после письма Мерсенну в письме к Каркави, отправленном в августе 1659 года, Ферма приоткрывает замысел доказательства описанной выше теоремы. Он пишет, что основная идея доказательства состоит в методе спуска, позволяющем из предположения, что для какого-то простого числа вида 4n+1 заключение теоремы неверно, получить, что оно неверно и для меньшего числа того же и т. д., пока мы не доберемся до числа 5, когда окончательно придем к противоречию.
Первые доказательства, которые впоследствии были опубликованы, найдены Эйлером между 1742 и 1747 годами. Причем, желая утвердить приоритет Ферма, к которому он испытывал чувства глубочайшего уважения, Эйлер придумал доказательство, соответствующее описанному выше замыслу Ферма.
Воздавая должное обоим великим ученым, мы называем эту теорему теоремой Ферма-Эйлера.
ЛИТЕРАТУРА:
1. Бухштаб А.А. Теория чисел.-М.: Государственное учебно-педагогическое издательство Министерства просвещения РСФСР, 1960.- 375 с.
2. http://www.cryptography.ru
3. http://mech.math.msu.su
4. http://courier.com.ru