Таким образом, исходное выражение (3) равно
Задача 3. Разложить на множители выражение:
Решение: Обозначив данное выражение через
и считая и постоянными, получим: откуда , где зависит только от и . Положив в этом тождестве , получим иДля разложения на множители второго множителя используем тот же приём, но в качестве переменной рассмотрим
, поскольку эта переменная входит в меньшей степени, чем . Обозначая его через и считая и постоянными, будем иметь:отсюда:
Таким образом исходное выражение (4) равно
9.5. Применение производной в вопросах существования корней уравнений.
С помощью производной можно определить сколько решений имеет уравнение. Основную роль здесь играют исследование функций на монотонность, нахождение её экстремальных значений. Кроме того, используется свойство монотонных функций:
Задача 1. Если функция
возрастает или убывает на некотором промежутке, то на этом промежутке уравнение имеет не более одного корня. (1)Решение: Область определения данного уравнения - промежуток
определение на этом промежутке функцию , положивТогда, на
Þ ,и таким образом функция
- возрастающая, так что данное уравнение (1) не может иметь более одного решения.Задача 2. При каких значениях
имеет решения уравнение (2)Решение: область определения уравнения - отрезок
, рассмотрим функцию , положивТогда на открытом промежутке
, так что - единственная критическая точка функции , являющаяся, очевидно, точкой максимума. Поскольку то примет наибольшее значение при , а наименьшее значение - при .Так как функция
непрерывна, то её область значений представляет собой отрезок , между её наименьшим и наибольшим значением. Другими словами, исходное уравнение (2) имеет решения при .Заключение
Настоящая работа даёт учащимся новый подход к многим преобразованиям в математике, которые стандартным путём трудно разрешимы или разрешимы, но громоздкими способами. Рассмотренные подходы нестандартного характера для учащихся покажутся новыми и необыкновенными, что расширит их кругозор и повысит интерес к производной.
Итак, геометрический смысл производной: производная функции в точке x0 равна угловому коэффициенту касательной к графику функции, проведенной в точке с абсциссой x0.
Физический смысл производной: производная функции y = f(x) в точке x0 - это скорость изменения функции f (х) в точке x0
Экономический смысл производной: производная выступает как интенсивность изменения некоторого экономического объекта (процесса) по времени или относительно другого исследуемого фактора.
Производная находит широкое приложение в физике для нахождения скорости по известной функции координаты от времени, ускорения по известной функции скорости от времени; для нахождения наибольших и наименьших величин.
Производная является важнейшим инструментом экономического анализа, позволяющим углубить геометрический и математический смысл экономических понятий, а также выразить ряд экономических законов с помощью математических формул.
Наиболее актуально использование производной в предельном анализе, то есть при исследовании предельных величин (предельные издержки, предельная выручка, предельная производительность труда или других факторов производства и т. д.).
Производная применяется в экономической теории. Многие, в том числе базовые, законы теории производства и потребления, спроса и предложения оказываются прямыми следствиями математических теорем
Знание производной позволяет решать многочисленные задачи по экономической теории, физике, алгебре и геометрии.